Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System?

Total Page:16

File Type:pdf, Size:1020Kb

Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System? See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306051060 Golden Ratio: A subtle regulator in our body and cardiovascular system? Article in International journal of cardiology · August 2016 DOI: 10.1016/j.ijcard.2016.08.147 CITATIONS READS 8 266 3 authors, including: Selcuk Ozturk Ertan Yetkin Ankara University Istinye University, LIV Hospital 56 PUBLICATIONS 121 CITATIONS 227 PUBLICATIONS 3,259 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: microbiology View project golden ratio View project All content following this page was uploaded by Ertan Yetkin on 23 August 2019. The user has requested enhancement of the downloaded file. International Journal of Cardiology 223 (2016) 143–145 Contents lists available at ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Golden ratio: A subtle regulator in our body and cardiovascular system? Selcuk Ozturk a, Kenan Yalta b, Ertan Yetkin c,⁎ a Abant Izzet Baysal University, Faculty of Medicine, Department of Cardiology, Bolu, Turkey b Trakya University, Faculty of Medicine, Department of Cardiology, Edirne, Turkey c Yenisehir Hospital, Division of Cardiology, Mersin, Turkey article info abstract Article history: Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio be- Received 13 July 2016 tween two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the Accepted 7 August 2016 ratio between the lengths of the longer and the sum of the lengths. The so-called formula is a mathematical ratio Available online 10 August 2016 and there exist a variety of examples in natural and man-made structures of great beauty. Moreover, golden ratio is expressed throughout the human body in some ways, including digits, uterus, teeth, and cardiovascular sys- Keywords: tem. Although the association of Fibonacci series or golden ratio with systems and organs of human being has Golden ratio Fibonacci series not been assessed in depth yet, the mainstream regulation of cardiovascular system seems to be associated Heart with golden ratio. This raises the idea that there might have been a fine and subtle regulator in our body. In Cardiovascular system this article, we aimed to elaborate the relationship between the existence of golden ratio and the human body and to discuss the golden ratio and its association with cardiovascular system. © 2016 Elsevier Ireland Ltd. All rights reserved. 1. Introduction The golden ratio is also related with geometric shapes like triangles, rectangles and pentagrams, to the equiangular spiral and these golden The mathematician who lived in the thirteenth century, Leonardo of geometric shapes have the feature that the ratio between the lengths Pisa, nicknamed “Fibonacci” described a number series which was later of their sides is the golden ratio. Golden section governs the hole field named after him. The sequence follows 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, of pentagonal geometry which conforms to the golden section in its all etc. and it is easy to follow. It suggests that for the integer sequence limbs. It plays an essential role in the construction of the pentagon starting with 0 or 1, the sequential number is the sum of the two previ- and five-fold symmetry and is used extensively in ancient and modern ous numbers. This ratio has also been described by Euclid as an extreme architecture, painting and music. Long before then Leonardo Pisa, gold- and mean ratio. When a straight line (AC) is divided into two sections by en ratio was used in monumental architecture of Egypt and elsewhere such a point B, the smaller section of the line (BC) is related to the larger in the ancient world [5–8]. section of the line (AB) in the same ratio as the larger section is related to the whole line (AC) (Fig. 1). In principle, golden proportion is an ob- 2. Golden ratio and the human body servation that the ratio of any two sequential Fibonacci numbers ap- proximates to the value of 1.618 which is named as the Greek letter Although modern science has reduced the concept of human being Phi (φ). The larger the consecutive numbers in the sequence, the more to molecular level, there seems to be lacking bricks and it is insufficient precise the approximation of 1.618. This ratio, which is named as the to understand human condition in health and illness. Tremendous ad- golden ratio or golden number has been discussed as for its apparent vances have been achieved in anatomy, physiology, biology, molecular aesthetic pleasure [1,2]. Artists, scientists and biologists with a notion biology by modern medicine in recent decades. However evidences of of philosophy have become entranced by the golden section and many other subtle regulations also exist in our living or non-living environ- different ways in which it determines the form and patterns in every ment and human body as well. If we start from the anatomy and beauty manifestation of life. Occurrence of Fibonacci numbers in the spiral which have been investigated for many years, it might have subtle arrangement of leaves around a plant's stem (called phyllotaxis) is concerns. Golden ratio or Fibonacci sequences occur in human body one of the main interests of scientists [3]. Fibonacci series have also as in every manifestation of life. The superimposed human hand ap- been used in the modelling of biological and financial systems as well proximates to the golden spiral which resembles golden rectangle [9]. as in electronics and music [4]. Additionally, phalangeal lengths of the digits indicate the Fibonacci values [10]. Such an observation can be seen in the human ear which approximates to the dimensions of the golden spiral [11]. ⁎ Corresponding author. The investigations about facial beauty mostly depend on mouth and E-mail addresses: [email protected], [email protected] (E. Yetkin). teeth which are the main features of the human face and the starting http://dx.doi.org/10.1016/j.ijcard.2016.08.147 0167-5273/© 2016 Elsevier Ireland Ltd. All rights reserved. 144 S. Ozturk et al. / International Journal of Cardiology 223 (2016) 143–145 nearly at the predicted distance [20]. This is the first study in the liter- ature demonstrating the presence of the Fibonacci Cascade in the dis- tribution of the culprit lesions in coronary arteries. The existence of this ratio may be related to the location of the branches in the coronary anatomy. In terms of beauty in nature, minimization of wasted space and the need for energy, golden ratio seems to be an important player for the regulation of harmony in our universe. We can state that there is a propensity for this ratio to appear in the nature because this ratio provides minimizing of the wasted space and the need for energy and nutrients is optimized. We cannot associate such a sequence to the coro- nary tree directly because of the complexity of the coronary anatomy but if the Fibonacci sequence is essential for the branch location, then we can speculate that this relation may optimize the branching pattern of the vessels. Thus, coronary tree maximizes myocardial perfusion like plant leaves and seed heads. Likewise, Ashrafian and his friends hypothesized that the structure of the coronary arterial branching system is analogous to the leaf branching seen in trees as described above. They studied data from 36 mammalian Fig. 1. Schematic view of cardiac stimulation (a); systolic blood pressure (SBP), diastolic species [21] and found that the association of cardiac diameters by the blood pressure (DBP) (b); and contraction diameters of left ventricle (c); AC/AB = sum of the diameters of all 13 branches is in the order of the golden AB/BC = 1618. ratio. They suggest that Fibonacci number series can be used to develop a bio-mathematical model of the coronary arterial system. Thus, we can point of these studies is the rule of golden proportions. Rickets investi- demonstrate myocardial metabolic maps and predict disease location gated the aesthetic smile and its relationship with golden ratio and and geometry. Also, this model can be used in the development of car- Fibonacci sequence in 1982. He applied the use of golden proportions diac radionuclide or magnetic resonance imaging techniques [22]. in the treatment of patients [6,12,13]. Elliot and his friends investigated The diameters of cardiac chambers have been evaluated by means the relationship between the aesthetic preference and the golden ratio. of transverse and vertical cardiac chamber measurements in each par- In their study, they found that golden sectioning affects the efficiency of ticipant of Swedish and Chinese population. Although the diameter of visual processing [14]. Golden ratio has also been investigated by Chinese population is found to be lower than that of Swedish popula- gynaecologists to document normal measurements and proportions of tion, golden proportions have been maintained in both population at the non-pregnant uterus according to age and gravity. They found that 1618. Additionally, significant deviation of vertical to transvers diame- at the age of peak fertility, the uterus measurements were equal to the ters ratio as 1,4 and increased mortality have been demonstrated in golden ratio [15]. end stage heart failure patients [23]. When the heart's contractile The relationship between Fibonacci sequence, fractals and human force and myocardial wall thickness reduce, the heart's shape becomes genome was first studied in 1982 by Benoit Mandelbot. He supposed dilated and spherical [24,25]. This remodelling process results in impair- that the structure of DNA and its organization pattern is fractal.
Recommended publications
  • Linguistic Presentation of Objects
    Zygmunt Ryznar dr emeritus Cracow Poland [email protected] Linguistic presentation of objects (types,structures,relations) Abstract Paper presents phrases for object specification in terms of structure, relations and dynamics. An applied notation provides a very concise (less words more contents) description of object. Keywords object relations, role, object type, object dynamics, geometric presentation Introduction This paper is based on OSL (Object Specification Language) [3] dedicated to present the various structures of objects, their relations and dynamics (events, actions and processes). Jay W.Forrester author of fundamental work "Industrial Dynamics”[4] considers the importance of relations: “the structure of interconnections and the interactions are often far more important than the parts of system”. Notation <!...> comment < > container of (phrase,name...) ≡> link to something external (outside of definition)) <def > </def> start-end of definition <spec> </spec> start-end of specification <beg> <end> start-end of section [..] or {..} 1 list of assigned keywords :[ or :{ structure ^<name> optional item (..) list of items xxxx(..) name of list = value assignment @ mark of special attribute,feature,property @dark unknown, to obtain, to discover :: belongs to : equivalent name (e.g.shortname) # number of |name| executive/operational object ppppXxxx name of item Xxxx with prefix ‘pppp ‘ XXXX basic object UUUU.xxxx xxxx object belonged to UUUU object class & / conjunctions ‘and’ ‘or’ 1 If using Latex editor we suggest [..] brackets
    [Show full text]
  • Theon of Alexandria and Hypatia
    CREATIVE MATH. 12 (2003), 111 - 115 Theon of Alexandria and Hypatia Michael Lambrou Abstract. In this paper we present the story of the most famous ancient female math- ematician, Hypatia, and her father Theon of Alexandria. The mathematician and philosopher Hypatia flourished in Alexandria from the second part of the 4th century until her violent death incurred by a mob in 415. She was the daughter of Theon of Alexandria, a math- ematician and astronomer, who flourished in Alexandria during the second part of the fourth century. Information on Theon’s life is only brief, coming mainly from a note in the Suda (Suida’s Lexicon, written about 1000 AD) stating that he lived in Alexandria in the times of Theodosius I (who reigned AD 379-395) and taught at the Museum. He is, in fact, the Museum’s last attested member. Descriptions of two eclipses he observed in Alexandria included in his commentary to Ptolemy’s Mathematical Syntaxis (Almagest) and elsewhere have been dated as the eclipses that occurred in AD 364, which is consistent with Suda. Although originality in Theon’s works cannot be claimed, he was certainly immensely influential in the preservation, dissemination and editing of clas- sic texts of previous generations. Indeed, with the exception of Vaticanus Graecus 190 all surviving Greek manuscripts of Euclid’s Elements stem from Theon’s edition. A comparison to Vaticanus Graecus 190 reveals that Theon did not actually change the mathematical content of the Elements except in minor points, but rather re-wrote it in Koini and in a form more suitable for the students he taught (some manuscripts refer to Theon’s sinousiai).
    [Show full text]
  • Alexandrea Ad Aegyptvm the Legacy of Multiculturalism in Antiquity
    Alexandrea ad aegyptvm the legacy of multiculturalism in antiquity editors rogério sousa maria do céu fialho mona haggag nuno simões rodrigues Título: Alexandrea ad Aegyptum – The Legacy of Multiculturalism in Antiquity Coord.: Rogério Sousa, Maria do Céu Fialho, Mona Haggag e Nuno Simões Rodrigues Design gráfico: Helena Lobo Design | www.hldesign.pt Revisão: Paula Montes Leal Inês Nemésio Obra sujeita a revisão científica Comissão científica: Alberto Bernabé, Universidade Complutense de Madrid; André Chevitarese, Universidade Federal, Rio de Janeiro; Aurélio Pérez Jiménez, Universidade de Málaga; Carmen Leal Soares, Universidade de Coimbra; Fábio Souza Lessa, Universidade Federal, Rio de Janeiro; José Augusto Ramos, Universidade de Lisboa; José Luís Brandão, Universidade de Coimbra; Natália Bebiano Providência e Costa, Universidade de Coimbra; Richard McKirahan, Pomona College, Claremont Co-edição: CITCEM – Centro de Investigação Transdisciplinar «Cultura, Espaço e Memória» Via Panorâmica, s/n | 4150-564 Porto | www.citcem.org | [email protected] CECH – Centro de Estudos Clássicos e Humanísticos | Largo da Porta Férrea, Universidade de Coimbra Alexandria University | Cornice Avenue, Shabty, Alexandria Edições Afrontamento , Lda. | Rua Costa Cabral, 859 | 4200-225 Porto www.edicoesafrontamento.pt | [email protected] N.º edição: 1152 ISBN: 978-972-36-1336-0 (Edições Afrontamento) ISBN: 978-989-8351-25-8 (CITCEM) ISBN: 978-989-721-53-2 (CECH) Depósito legal: 366115/13 Impressão e acabamento: Rainho & Neves Lda. | Santa Maria da Feira [email protected] Distribuição: Companhia das Artes – Livros e Distribuição, Lda. [email protected] Este trabalho é financiado por Fundos Nacionais através da FCT – Fundação para a Ciência e Tecnologia no âmbito do projecto PEst-OE/HIS/UI4059/2011 HYPATIA AND THE IDIOSCYNCRASIES OF CHRISTIANITY IN EGYPT – A STUDY OF THE EVENTS OCCURRED AT EASTER 415 A.D.
    [Show full text]
  • Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
    Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes.
    [Show full text]
  • The Golden Ratio and the Diagonal of the Square
    Bridges Finland Conference Proceedings The Golden Ratio and the Diagonal of the Square Gabriele Gelatti Genoa, Italy [email protected] www.mosaicidiciottoli.it Abstract An elegant geometric 4-step construction of the Golden Ratio from the diagonals of the square has inspired the pattern for an artwork applying a general property of nested rotated squares to the Golden Ratio. A 4-step Construction of the Golden Ratio from the Diagonals of the Square For convenience, we work with the reciprocal of the Golden Ratio that we define as: φ = √(5/4) – (1/2). Let ABCD be a unit square, O being the intersection of its diagonals. We obtain O' by symmetry, reflecting O on the line segment CD. Let C' be the point on BD such that |C'D| = |CD|. We now consider the circle centred at O' and having radius |C'O'|. Let C" denote the intersection of this circle with the line segment AD. We claim that C" cuts AD in the Golden Ratio. B C' C' O O' O' A C'' C'' E Figure 1: Construction of φ from the diagonals of the square and demonstration. Demonstration In Figure 1 since |CD| = 1, we have |C'D| = 1 and |O'D| = √(1/2). By the Pythagorean Theorem: |C'O'| = √(3/2) = |C''O'|, and |O'E| = 1/2 = |ED|, so that |DC''| = √(5/4) – (1/2) = φ. Golden Ratio Pattern from the Diagonals of Nested Squares The construction of the Golden Ratio from the diagonal of the square has inspired the research of a pattern of squares where the Golden Ratio is generated only by the diagonals.
    [Show full text]
  • The Mathematics of Art: an Untold Story Project Script Maria Deamude Math 2590 Nov 9, 2010
    The Mathematics of Art: An Untold Story Project Script Maria Deamude Math 2590 Nov 9, 2010 Art is a creative venue that can, and has, been used for many purposes throughout time. Religion, politics, propaganda and self-expression have all used art as a vehicle for conveying various messages, without many references to the technical aspects. Art and mathematics are two terms that are not always thought of as being interconnected. Yet they most definitely are; for art is a highly technical process. Following the histories of maths and sciences – if not instigating them – art practices and techniques have developed and evolved since man has been on earth. Many mathematical developments occurred during the Italian and Northern Renaissances. I will describe some of the math involved in art-making, most specifically in architectural and painting practices. Through the medieval era and into the Renaissance, 1100AD through to 1600AD, certain significant mathematical theories used to enhance aesthetics developed. Understandings of line, and placement and scale of shapes upon a flat surface developed to the point of creating illusions of reality and real, three dimensional space. One can look at medieval frescos and altarpieces and witness a very specific flatness which does not create an illusion of real space. Frescos are like murals where paint and plaster have been mixed upon a wall to create the image – Michelangelo’s work in the Sistine Chapel and Leonardo’s The Last Supper are both famous examples of frescos. The beginning of the creation of the appearance of real space can be seen in Giotto’s frescos in the late 1200s and early 1300s.
    [Show full text]
  • Leonardo Da Vinci's Study of Light and Optics: a Synthesis of Fields in The
    Bitler Leonardo da Vinci’s Study of Light and Optics Leonardo da Vinci’s Study of Light and Optics: A Synthesis of Fields in The Last Supper Nicole Bitler Stanford University Leonardo da Vinci’s Milanese observations of optics and astronomy complicated his understanding of light. Though these complications forced him to reject “tidy” interpretations of light and optics, they ultimately allowed him to excel in the portrayal of reflection, shadow, and luminescence (Kemp, 2006). Leonardo da Vinci’s The Last Supper demonstrates this careful study of light and the relation of light to perspective. In the work, da Vinci delved into the complications of optics and reflections, and its renown guided the artistic study of light by subsequent masters. From da Vinci’s personal manuscripts, accounts from his contemporaries, and present-day art historians, the iterative relationship between Leonardo da Vinci’s study of light and study of optics becomes apparent, as well as how his study of the two fields manifested in his paintings. Upon commencement of courtly service in Milan, da Vinci immersed himself in a range of scholarly pursuits. Da Vinci’s artistic and mathematical interest in perspective led him to the study of optics. Initially, da Vinci “accepted the ancient (and specifically Platonic) idea that the eye functioned by emitting a special type of visual ray” (Kemp, 2006, p. 114). In his early musings on the topic, da Vinci reiterated this notion, stating in his notebooks that, “the eye transmits through the atmosphere its own image to all the objects that are in front of it and receives them into itself” (Suh, 2005, p.
    [Show full text]
  • Linguistic Presentation of Object Structure and Relations in OSL Language
    Zygmunt Ryznar Linguistic presentation of object structure and relations in OSL language Abstract OSL© is a markup descriptive language for the description of any object in terms of structure and behavior. In this paper we present a geometric approach, the kernel and subsets for IT system, business and human-being as a proof of universality. This language was invented as a tool for a free structured modeling and design. Keywords free structured modeling and design, OSL, object specification language, human descriptive language, factual markup, geometric view, object specification, GSO -geometrically structured objects. I. INTRODUCTION Generally, a free structured modeling is a collection of methods, techniques and tools for modeling the variable structure as an opposite to the widely used “well-structured” approach focused on top-down hierarchical decomposition. It is assumed that system boundaries are not finally defined, because the system is never to be completed and components are are ready to be modified at any time. OSL is dedicated to present the various structures of objects, their relations and dynamics (events, actions and processes). This language may be counted among markup languages. The fundamentals of markup languages were created in SGML (Standard Generalized Markup Language) [6] descended from GML (name comes from first letters of surnames of authors: Goldfarb, Mosher, Lorie, later renamed as Generalized Markup Language) developed at IBM [15]. Markups are usually focused on: - documents (tags: title, abstract, keywords, menu, footnote etc.) e.g. latex [14], - objects (e.g. OSL), - internet pages (tags used in html, xml – based on SGML [8] rules), - data (e.g. structured data markup: microdata, microformat, RFDa [13],YAML [12]).
    [Show full text]
  • Computer Vision Today Introductions Introductions Computer Vision Why
    Today • Course overview • Requirements, logistics Computer Vision • Image formation Thursday, August 30 Introductions Introductions • Instructor: Prof. Kristen Grauman grauman @ cs TAY 4.118, Thurs 2-4 pm • TA: Sudheendra Vijayanarasimhan svnaras @ cs ENS 31 NQ, Mon/Wed 1-2 pm • Class page: Check for updates to schedule, assignments, etc. http://www.cs.utexas.edu/~grauman/courses/378/main.htm Computer vision Why vision? • Automatic understanding of images and • As image sources multiply, so do video applications • Computing properties of the 3D world from – Relieve humans of boring, easy tasks visual data – Enhance human abilities • Algorithms and representations to allow a – Advance human-computer interaction, machine to recognize objects, people, visualization scenes, and activities. – Perception for robotics / autonomous agents • Possible insights into human vision 1 Some applications Some applications Navigation, driver safety Autonomous robots Assistive technology Surveillance Factory – inspection Monitoring for safety (Cognex) (Poseidon) Visualization License plate reading Visualization and tracking Medical Visual effects imaging (the Matrix) Some applications Why is vision difficult? • Ill-posed problem: real world much more complex than what we can measure in Situated search images Multi-modal interfaces –3D Æ 2D • Impossible to literally “invert” image formation process Image and video databases - CBIR Tracking, activity recognition Challenges: robustness Challenges: context and human experience Illumination Object pose Clutter
    [Show full text]
  • The Golden Ratio
    Mathematical Puzzle Sessions Cornell University, Spring 2012 1 Φ: The Golden Ratio p 1 + 5 The golden ratio is the number Φ = ≈ 1:618033989. (The greek letter Φ used to 2 represent this number is pronounced \fee".) Where does the number Φ come from? Suppose a line is broken into two pieces, one of length a and the other of length b (so the total length is a + b), and a and b are chosen in a very specific way: a and b are chosen so that the ratio of a + b to a and the ratio of a to b are equal. a b a + b a ! a b a+b a It turns out that if a and b satisfy this property so that a = b then the ratios are equal to the number Φ! It is called the golden ratio because among the ancient Greeks it was thought that this ratio is the most pleasing to the eye. a Try This! You can verify that if the two ratios are equal then b = Φ yourself with a bit of careful algebra. Let a = 1 and use the quadratic equation to find the value of b that makes 1 the two ratios equal. If you successfully worked out the value of b you should find b = Φ. The Golden Rectangle A rectangle is called a golden rectangle if the ratio of the sides of the rectangle is equal to Φ, like the one shown below. 1 Φ p 1 −1+ 5 If the ratio of the sides is Φ = 2 this is also considered a golden rectangle.
    [Show full text]
  • Geometry and Art & Architecture
    CHARACTERISTICS AND INTERRELATIONS OF FORMS ARCH 115 Instructor: F. Oya KUYUMCU Mathematics in Architecture • Mathematics can, broadly speaking, be subdivided into to study of quantity - arithmetic structure – algebra space – geometry and change – analysis. In addition to these main concerns, there are also sub-divisions dedicated to exploring links from the heart of mathematics to other field. to logic, to set theory (foundations) to the empirical mathematics of the various sciences to the rigorous study of uncertanity Lecture Topics . Mathematics and Architecture are wholly related with each other. All architectural products from the door to the building cover a place in space. So, all architectural elements have a volume. One of the study field of mathematics, name is geometry is totally concern this kind of various dimensional forms such as two or three or four. If you know geometry well, you can create true shapes and forms for architecture. For this reason, in this course, first we’ll look to the field of geometry especially two and three dimensions. Our second goal will be learning construction (drawing) of this two or three dimensional forms. • Architects intentionally or accidently use ratio and mathematical proportions to shape buildings. So, our third goal will be learning some mathematical concepts like ratio and proportions. • In this course, we explore the many places where the fields of art, architecture and mathematics. For this aim, we’ll try to learn concepts related to these fields like tetractys, magic squares, fractals, penrose tilling, cosmic rythms etc. • We will expose to you to wide range of art covering a long historical period and great variety of styles from the Egyptians up to contemporary world of art and architecture.
    [Show full text]
  • Linking Math with Art Through the Elements of Design
    2007 Asilomar Mathematics Conference Linking Math With Art Through The Elements of Design Presented by Renée Goularte Thermalito Union School District • Oroville, California www.share2learn.com [email protected] The Elements of Design ~ An Overview The elements of design are the components which make up any visual design or work or art. They can be isolated and defined, but all works of visual art will contain most, if not all, the elements. Point: A point is essentially a dot. By definition, it has no height or width, but in art a point is a small, dot-like pencil mark or short brush stroke. Line: A line can be made by a series of points, a pencil or brush stroke, or can be implied by the edge of an object. Shape and Form: Shapes are defined by lines or edges. They can be geometric or organic, predictably regular or free-form. Form is an illusion of three- dimensionality given to a flat shape. Texture: Texture can be tactile or visual. Tactile texture is something you can feel; visual texture relies on the eyes to help the viewer imagine how something might feel. Texture is closely related to Pattern. Pattern: Patterns rely on repetition or organization of shapes, colors, or other qualities. The illusion of movement in a composition depends on placement of subject matter. Pattern is closely related to Texture and is not always included in a list of the elements of design. Color and Value: Color, also known as hue, is one of the most powerful elements. It can evoke emotion and mood, enhance texture, and help create the illusion of distance.
    [Show full text]