Landcorp's Outline Development Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A 'Slow Pace of Life' in Australian Old-Endemic Passerine Birds Is Not Accompanied by Low Basal Metabolic Rates
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2016 A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates Claus Bech University of Wollongong Mark A. Chappell University of Wollongong, [email protected] Lee B. Astheimer University of Wollongong, [email protected] Gustavo A. Londoño Universidad Icesi William A. Buttemer University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Bech, Claus; Chappell, Mark A.; Astheimer, Lee B.; Londoño, Gustavo A.; and Buttemer, William A., "A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates" (2016). Faculty of Science, Medicine and Health - Papers: part A. 3841. https://ro.uow.edu.au/smhpapers/3841 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates Abstract Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species. -
Disaggregation of Bird Families Listed on Cms Appendix Ii
Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2. -
2020 KALAMUNDA LOCAL BIODIVERSITY STRATEGY Technical Report October 2020
Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 City of Kalamunda Biodiversity Conservation Action Plan 2020 – 2030 2020 KALAMUNDA LOCAL BIODIVERSITY STRATEGY Technical Report October 2020 Prepared by Nam Natura Consulting 0 City of Kalamunda 852 Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 Document Tracking Item Detail Project Name Review and update of the City of Kalamunda Local Biodiversity Strategy Client City of Kalamunda Prepared by Renata Zelinova Status Draft Technical Report Version 4 Number Last saved on Disclaimer This document may only be used for the purpose for which it was commissioned and in accordance with the contract between the City of Kalamunda and Nam Natura Consulting. The scope of services was defined in consultation with the client, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information. Nam Natura Consulting accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited. 1 City of Kalamunda 853 Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 PURPOSE .................................................................................................................... 4 1 INTRODUCTION – WHY HAVE A LOCAL BIODIVERSITY STRATEGY? .............. -
Special Issue3.7 MB
Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird -
East Gippsland, Victoria
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Survey of the Underground Signs of Marsupial Moles in the WA Great Victoria Desert
Survey of the underground signs of marsupial moles in the WA Great Victoria Desert Report to Tropicana Joint Venture and the Department of Natural Resources, Environment and the Arts, Northern Territory Government Joe Benshemesh Martin Schulz September 2008 Marsupial moles in the WA Great Victoria Desert Benshemesh & Schulz 2008 Contents Summary.......................................................................................................................3 Introduction..................................................................................................................5 Methods........................................................................................................................7 Methods........................................................................................................................8 Sites.........................................................................................................................8 Trenches.................................................................................................................9 Moleholes ..............................................................................................................9 Additional data ....................................................................................................9 Results..........................................................................................................................12 Characteristics attributes of backfilled tunnels in WA GVD.............................12 -
Birdwatching Around Corrigin
SITES TO THE WEST INTRODUCTON: In the following woodland sites, look for Australian Agricultural and pastoral industries form the basis of BIRDWATCHING Ringneck, Red-capped Parrot, Rufous Whistler, Grey this thriving community. A visit to some of the places Shrike-thrush, Red-capped Robin, Southern Scrub- mentioned will help you to experience a wide range robin, Redthroat, Weebill, Striated Pardalote and of natural features, vegetation and bird life within the AROUND Brown-headed Honeyeater. shire and surrounding areas. From a bird-watching perspective, this is a good area to see raptors. CORRIGIN Please take care if you need to park on road verges to access 1. KUNJIN sites, especially in summer when the fire risk is greater. An old town site adjoins a nature reserve. Excellent woodlands ACKNOWLEDGEMENTS: including Rock Sheoak, Kondinin Blackbutt and mallees. Illustrations: Judy Blyth, Alan Collins,, Keith Lightbody, Ron Johnstone, Susan Tingay, Eric Tan. Striated Pardalote Local information: Robin Campbell, BirdLife Avon & Birdata, 2. JUBUK NORTH ROAD Wendy Kenworthy. 20km west of Corrigin. Parkland with patches of York Gum woodland, heath and salt-land. Local contacts: Robin 0499 624 038 Lawry 0429 164 187 3. LOMOS Guide No. 20AB; Revised Nov 2017. All content is subject to A good patch of mixed open woodland. Red Morrells, copyright ©. Queries to BirdLife Western Australia. Silver Mallet, mallees and Wandoo support Rufous Treecreeper, Redthroat, Crimson Chat, Varied Sittella and Grey Currawong. 4. OVERHEU Rufous Whistler On Brookton Hwy, with Eucalyptus macrocarpa and sheoak. Best access is from a roadside bay on Brookton Nankeen Kestrel by David Free Highway. BirdLife Western Australia members are offered a variety of 5. -
Biogeography of the Vertebrates of the Cape Range Peninsula, Western Australia
Biogeography of the vertebrates of the Cape Range peninsula, Western Australia Peter G. Kendrick Department of Conservation and Land Management, p.a. Box 835, Karratha, Western Australia 6714. Abstract Thirty mammals, 84 reptiles, tlve amphibians and about 200 birds are known from the Cape Range peninsula. Biogcographie pattems of the extant terrestrial vertebrate fauna of the peninsula, particularly among the herpetofauna and avifauna, arc significantly related to landfoITll units present on the peninsula. TIle mammal fauna of the Cape Range peninsula ha, suffered numerous reccnt extinctions, but is not yet completely known (particularly for bats). With the exception of Petrogale lateralis, the 11 ground dwelling native mammals arc common elsewhere in the arid and semi-arid north west of Westem Australia. Most of the bats are northern species, but two southern species are present (Tadarida australia and Chalinolobus gouldii). Introduced mammals arc well established in the area including goats and foxes. In addition to ubiquitous species, the bird and reptile faunas arc typical of the semi-arid and arid north west and interior, although some south western species arc also present. Many species are represented on Cape Range peninsula by populations isolated from the main part of their conspecific distribution. Despite this, levels of endemism on the peninsula are low. Only two species, Lerista allochira (a skink confined to the limestone of the Cape Range) and the Grey Shrike-thrush (Colluricincla harmonica rufiventris) show spec1flc and sub-specific endemism within the Cape Range peninsula area. Inter-tidal coastal flats and man!,'Tove habitats are significant to many bird species occurring on the peninsula, although many of these are migratory. -
Fauna Assessment of Lots 107 & 108 Wattleup Road
Fauna Assessment of Lots 107 & 108 Wattleup Road Hammond Park NOVEMBER 2016 Version 1 On behalf of: Emerge Associates Suite 4, 26 Railway Road SUBIACO WA 6008 T: 08 9380 4988 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 E: [email protected] LOTS 107 & 108 WATTLEUP ROAD - HAMMOND PARK – FAUNA ASSESSMENT – NOVEMBER 2016 – V1 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION ................................................................................................. 4 2. DEVELOPMENT PROPOSAL ............................................................................. 4 3. SCOPE OF WORKS ........................................................................................... 4 4. BIOGEOGRAPHICAL SETTING ......................................................................... 5 5. METHODS........................................................................................................... 6 5.1 POTENTIAL FAUNA INVENTORY – LITERATURE REVIEW ............................ 6 5.1.1 Database Searches ................................................................................... 6 5.1.2 Previous Fauna Surveys in the Area ......................................................... 6 5.1.3 Existing Publications .................................................................................. 8 5.1.4 Fauna of Conservation Significance .......................................................... 9 5.1.5 Likelihood of Occurrence – Vertebrate Fauna of Conservation Significance .............................................................................................................. -
The Ecology of Lizard Reproductive Output
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. -
Quenda Wetland Reserve Strategic Management Plan
City of Melville Quenda Wetland Reserve Strategic Management Plan 08 August 2016 Executive Summary Quenda Wetland Reserve is a wetland reserve located within the City of Melville, in the suburb of Murdoch. The wetland is a conservation category sumpland with a man-made lake to collect extra stormwater runoff from surrounding development areas. Quenda Wetland Reserve is part of a regionally significant wetland and bushland ecological linkage that connects to other reserves throughout the Swan Coastal Plain region. These conservation values justify the need for a site-specific strategic management plan prepared in accordance with the Natural Areas Asset Management Plan (Waters A., 2011). The reserve consists of dryland and wetland vegetation that has intact vegetation structure, with minor disturbances present and floristic community types are considered well reserved and at low risk (Government of Western Australia, 2000). In addition to the open water body, the reserve has four distinct vegetation types as determined by Ecoscape (2015), namely: . Dry Shrubland . Melaleuca preissiana Woodland . Sedgeland . Wet Shrubland. Two species listed as at-risk by the City were recorded on site by Ecoscape (2015), including: . Low priority species – Hibbertia cuneiformis, which is considered to be dubious and not naturally occurring in the site . Very High priority species – Grevillea obtusifolia, which is at risk of being lost form this reserve and is poorly represented on the Swan Coastal Plain. Quenda Wetland Reserve provides habitat for several threatened or priority fauna species in decline on the Swan Coastal Plain, including: . Forest Red-tailed Cockatoos (Calyptorhynchus banksii naso), . Southern Brown Bandicoot or Quenda (Isoodon obesulus fusciventer) . -
A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.