Survey of the Underground Signs of Marsupial Moles in the WA Great Victoria Desert

Total Page:16

File Type:pdf, Size:1020Kb

Survey of the Underground Signs of Marsupial Moles in the WA Great Victoria Desert Survey of the underground signs of marsupial moles in the WA Great Victoria Desert Report to Tropicana Joint Venture and the Department of Natural Resources, Environment and the Arts, Northern Territory Government Joe Benshemesh Martin Schulz September 2008 Marsupial moles in the WA Great Victoria Desert Benshemesh & Schulz 2008 Contents Summary.......................................................................................................................3 Introduction..................................................................................................................5 Methods........................................................................................................................7 Methods........................................................................................................................8 Sites.........................................................................................................................8 Trenches.................................................................................................................9 Moleholes ..............................................................................................................9 Additional data ....................................................................................................9 Results..........................................................................................................................12 Characteristics attributes of backfilled tunnels in WA GVD.............................12 Size and shape of backfilled tunnels...............................................................12 Depth of backfilled tunnels...............................................................................15 Age of backfilled tunnels ..................................................................................16 Abundance of moleholes ....................................................................................18 Trench drying time .............................................................................................18 Topography.........................................................................................................19 Geography .........................................................................................................19 Habitat features..................................................................................................20 DISCUSSION ................................................................................................................22 Occurrence of marsupial moles in the WA GVD ..............................................22 Undersized moleholes........................................................................................23 Marsupial moles distribution and abundance in GVD .....................................23 Final comments......................................................................................................25 References..................................................................................................................26 Appendix 1 .................................................................................................................27 Appendix 2. Incidental fauna records ...................................................................30 2 Marsupial moles in the WA Great Victoria Desert Benshemesh & Schulz 2008 Summary • Itjaritjari (Southern Marsupial Mole Notoryctes typhlops) and its close relative the Kakarratul (Northern Marsupial Mole N. caurinus ) from north-western Australia, are little known subterranean animals that inhabit the vast sandy deserts of Central Australia. Elusive, enigmatic, and the sole representatives of a unique and ancient lineage, these animals are rarely encountered and both species are listed as Endangered nationally. • Although the Great Victoria Desert (GVD) is a major stronghold for Itjaritjari, there are few records of the species from the Western Australia side of the desert. The distribution, abundance and trends of the species in the WA GVD are uncertain. • The current study was undertaken to provide new information on the distribution and abundance of Itjaritjari in the WA GVD in order to assess the conservation status of the species across this land system. • Between the 28th April and 14th May 2008, we surveyed a broad range of potential habitats in the WA GVD using trench survey techniques to assess the abundance of Itjaritjari signs underground. The survey sampled a small but representative proportion of the potential Itjaritjari habitat within the WA GVD landscape • Thirty five sites were sampled at which a total of 89 trenches were excavated. Over 170 backfilled tunnels were recorded in these trenches and at least 95% of these tunnels were considered to have been made by Itjaritjari. • Moleholes were typically 40 mm in diameter (standard deviation: +/- 3mm) and were similar in every way to those previously measured in the Anangu-Pitjantjatjara-Yankunytjatjara Lands in South Australia (SA) where the identity of backfilled tunnels of about 40mm has been linked to Itjaritjari tracks on the surface, and with the tunnels made by Itjaritjari that were captured and later released. • The results of the survey indicate that the species still occurs in the WA GVD and that it is widespread and probably more common than previous records suggest. Molehole abundance was similar to that recorded in the SA GVD and suggested that more than 30 km of recognisable moleholes per hectare occurs on the crests and slopes of these dunefields. However, we were unable to estimate the population size as the rates of decay and creation of moleholes is still uncertain. Studies are underway to estimate these quantities; however results are still several years away. • About 10% of moleholes we recorded appeared fresh, indicating that that Itjaritjari have created an average of about 3 km of backfilled tunnel per hectare since the last soaking rains at the 27 sites at which moleholes were identified in this study. • We also found that the abundance of moleholes in trenches was strongly related to the hardness of the sand, the height of dunes, the position of a trench on a dune, and the degree of connectivity between dunes. 3 Marsupial moles in the WA Great Victoria Desert Benshemesh & Schulz 2008 • The sensitivity of Itjaritjari to the connectivity between dunes suggests that the species may be especially vulnerable to any changes in the configuration and connectivity of dunes that result in patches of dunes being cut off and isolated from the surrounding dunefield matrix. Thus, earthworks that disrupt dune connectivity and effectively fragment Itjaritjari populations could cause more damage to Itjaritjari than the footprint of earthworks might suggest. It would be prudent for earthworks to proceed only with careful consideration of their likely effects on the continuity of Itjaritjari populations, and in conjunction with strategic survey and monitoring of Itjaritjari populations in the area. 4 Marsupial moles in the WA Great Victoria Desert Benshemesh & Schulz 2008 Introduction Marsupial moles ( Notoryctes typhlops and N. caurinus ) are little known subterranean animals that inhabit the vast sandy deserts of Central Australia. Elusive, enigmatic, and the sole representatives of a unique and ancient lineage, these species are rarely encountered and are listed as Endangered nationally, although even this is uncertain due to the paucity of information available about their population trends and ecology (Benshemesh 2004). Direct examination of marsupial mole ecology is virtually impossible with current techniques due to the apparent rarity of the animals and their cryptic subterranean habits, and conventional trapping methods such as the use of Elliot traps or pitfall traps are ineffective for detecting the presence of this species. However, recent studies in the Anangu-Pitjantjatjara-Yankunytjatjara Lands (APYL) have shown that indirect methods provide a means for examining the distribution and abundance of marsupial moles (Benshemesh 2005a). These methods include searching for the underground signs of marsupial moles which provides information on distribution and an index of abundance, and collecting and examining predator scats that occasionally contain marsupial moles remains and DNA and thus provides information on which species occurs in an area. Given that both species of marsupial moles are currently listed as Endangered under the Environment Protection and Biodiversity Conservation (EPBC) Act 1999 , data on the distribution and abundance is urgently needed both to assess the current status of the species, and to provide benchmarks for subsequent monitoring. The Great Victoria Desert (GVD) straddles the Western Australia (WA) and South Australia (SA) border and is the largest sand dune desert in Australia totalling nearly 40 million hectares. The WA side of the GVD comprises over 20 million hectares and is characterized by vast sand dune habitat that extends from the Nullarbor Plain in the south to the Central Ranges and Gibson Desert in the north (Figure 1). The region stretches from Laverton in the west to the South Australian border in the east, and most of this vast expanse is dunefield habitat. Itjaritjari (Southern Marsupial Mole N. typhlops ) have been collected or observed a number of times in the GVD and there are 52 records from this bioregion (including immediate surrounding areas) in museums and wildlife atlases around Australia
Recommended publications
  • A 'Slow Pace of Life' in Australian Old-Endemic Passerine Birds Is Not Accompanied by Low Basal Metabolic Rates
    University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2016 A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates Claus Bech University of Wollongong Mark A. Chappell University of Wollongong, [email protected] Lee B. Astheimer University of Wollongong, [email protected] Gustavo A. Londoño Universidad Icesi William A. Buttemer University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Bech, Claus; Chappell, Mark A.; Astheimer, Lee B.; Londoño, Gustavo A.; and Buttemer, William A., "A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates" (2016). Faculty of Science, Medicine and Health - Papers: part A. 3841. https://ro.uow.edu.au/smhpapers/3841 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates Abstract Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species.
    [Show full text]
  • Australia: State of the Environment 1996: Chapter 4
    Chapter 4 . Biodiversity ‘Still Flying’ from the painting of a Wandering Albatross by Richard Prepared by Weatherly. Denis Saunders (Chair), CSIRO Division of Wildlife and Ecology Andrew Beattie, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Susannah Eliott (Research Assistant/Science Writer), Centre for Science Communication, University of Technology, Sydney Marilyn Fox, School of Geography, University of New South Wales Burke Hill, CSIRO Division of Fisheries Bob Pressey, New South Wales National Parks and Wildlife Service Duncan Veal, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Jackie Venning, State of Environment Reporting, South Australian Department of Environment and Natural Resources Mathew Maliel (State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (Facilitator) Charlie Zammit (former State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (former Facilitator) 4-1 . Australia: State of the Environment 1996 . Contents Introduction. 4-4 Pressure . 4-7 Human populations . 4-9 Urban development . 4-9 Tourism and recreation . 4-9 Harvesting resources and land use. 4-10 Fisheries . 4-10 Forestry . 4-11 Pastoralism. 4-12 Agriculture . 4-12 Introduced species . 4-16 Vertebrates . 4-16 Invertebrates. 4-17 Plants. 4-18 Micro-organisms. 4-20 Native species out of place . 4-20 Pollution . 4-21 Mining . 4-22 Climate change . 4-22 State . 4-23 The state of ecosystem diversity . 4-23 Biogeographic regionalisations for Australia . 4-23 Ecosystem diversity. 4-26 The state of species diversity. 4-30 Number and distribution of species . 4-31 Status of species .
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Track-Based Monitoring for the Deserts and Rangelands of Australia
    Track-based monitoring for the deserts and rangelands of Australia Richard Southgate and Katherine Moseby Envisage Environmental Services Ecological Horizons June 2008 for the Threatened Species Network at WWF-Australia Executive Summary This document outlines a broad-scale nationally-coordinated program for monitoring threatened and invasive species in the inland deserts and rangelands of Australia. The program uses a track-based monitoring technique which has been developed after extensive work with Indigenous groups in arid Australia and is well suited to engage the skills of Indigenous people and provide meaningful employment. There is a pressing need to understand the broad-scale population trends and status of remnant threatened species and the distribution and abundance of invasive species in arid Australia. Animal populations are often highly dispersed, elusive and challenging to monitor and some species are producing considerable impact on agriculture and biodiversity. The proposed technique produces multi-species occupancy data and these data are foundational in studies of distribution and range and the study of animal invasions. The data are statistically robust and relatively inexpensive to produce. The technique is simple to apply and monitoring can be conducted on a broad-scale and is well-suited to the isolated, large, sandy areas of the interior. A draft monitoring protocol and data sheet is provided. To improve the validity of data it is proposed that a training and accreditation scheme would ensure the validity of data and allow skilled traditional owners to train others in their community. Track-based monitoring is not a new technique, indigenous groups have been using animal sign for millennia, and more recently scientists have also adopted this method particularly for monitoring introduced predators.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Heterothermy in Pouched Mammals a Review
    bs_bs_bannerJournal of Zoology Journal of Zoology. Print ISSN 0952-8369 MINI-SERIES Heterothermy in pouched mammals – a review A. Riek1,2 & F. Geiser2 1 Department of Animal Sciences, University of Göttingen, Göttingen, Germany 2 Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia Keywords Abstract heterothermy; marsupials; phylogeny; torpor; hibernation. Hibernation and daily torpor (i.e. temporal heterothermy) have been reported in many marsupial species of diverse families and are known to occur in ∼15% of all Correspondence marsupials, which is a greater proportion than the percentage of heterothermic Alexander Riek, Department of Animal placentals. Therefore, we aimed to gather data on heterothermy, including Sciences, University of Göttingen, minimal body temperature, torpor metabolic rate and torpor bout duration for Albrecht-Thaer-Weg 3, 37075 Göttingen, marsupials, and relate these physiological variables to phylogeny and other Germany. Tel: +49 551 395610; Fax: +49 physiological traits. Data from published studies on 41 marsupial species were 551 39 available for the present analysis. Heterothermic marsupials ranged from small Email: [email protected] species such as planigales weighing 7 g to larger species such as quolls weighing up to 1000 g. We used the marsupial phylogeny to estimate various heterothermic Editor: Heike Lutermann traits where the current dataset was incomplete. The torpor metabolic rate in relation to basal metabolic rate (%) ranged from 5.2 to 62.8% in daily Received 13 May 2013; revised 31 July heterotherms and from 2.1 to 5.2% in marsupial hibernators, and was significantly 2013; accepted 8 August 2013 correlated with the minimum body temperature in daily heterotherms (R2 = 0.77, P < 0.001), but not in hibernators (R2 = 0.10, P > 0.05).
    [Show full text]
  • East Gippsland, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • English Cop16 Prop. 6 CONVENTION on INTERNATIONAL
    Original language: English CoP16 Prop. 6 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Sixteenth meeting of the Conference of the Parties Bangkok (Thailand), 3-14 March 2013 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Delist the extinct Onychogalea lunata from Appendix I in accordance with the Resolution Conf. 9.24 (Rev. CoP15). The species does not meet the biological criteria (Annex 1) and trade criteria (Annex 5) for Appendix I. The precautionary measures referred to in Annex 4 A1 and D are not considered to be required for this proposal. Paragraph 1A requires species listed on Appendix I to be first transferred to Appendix II so that the impact of any trade can be monitored. Australia considers that it is not necessary to first transfer the species to Appendix II as it is extinct, has not been in trade and is never likely to be in trade. Paragraph D states that species regarded as possibly extinct should not be deleted from Appendix I if they may be affected by trade in the event of their rediscovery. Retaining the species on Appendix I with the annotation of ‘possibly extinct’ is not warranted because in the unlikely event of its rediscovery will not be affected by trade. B. Proponent Australia*, as requested by the Animals Committee, to delete the species from Appendix I (AC26 WG1 Doc. 2). C. Supporting statement 1. Taxonomy 1.1 Class: Mammalia 1.2 Order: Diprotodontia 1.3 Family: Macropodidae 1.4 Species: Onychogalea lunata (Gould, 1841) 1.5 Scientific
    [Show full text]
  • (A) Global Distribution of Hyperarid and Dryland Areas Figure 9.2
    a Figure 9.2 (a) Global distribution of hyperarid and dryland areas Drylands Dry subhumid areas Dry subhumid areas DrylandsSemiarid areas AridSemiarid areas areas DrylandsDryDry subhumidsubhumid areasareas HyperaridArid areas areas SemiaridSemiaridDryDry subhumidsubhumid areasareas areasareas AridArid areasareasHyperarid areas SemiaridSemiarid areasareas HyperaridHyperarid areasareas Map produced by ZOÏ Environment Network, September 2010 Source: UNEAridAridP W orld areasareas Conservation Monitoring Centre DrylandsHyperaridHyperarid areasareas Map produced by ZOÏ Environment Network, September 2010 MapMap producedproduced byby ZOÏZOÏ EnvironmentEnvironment Network,Network, SeptemberSeptember 20102010 Source: UNEDryP subhumidWorld Conservation areas Monitoring Centre Source:Source:b UNEUNEPP WWorldorld ConservationConservation MonitoringMonitoring CentreCentre DrylandsSemiarid areas Arid areas Figure 9.2 DryDry subhumidsubhumid areasareas Hyperarid areas SemiaridSemiarid areasareas (b) Regions MapMap producedproduced byby ZOÏZOÏ EnvironmentEnvironment Network,Network, SeptemberSeptember 20102010 Source:Source: UNEUNEPPAridArid WW areasorldareasorld ConservationConservation MonitoringMonitoring CentreCentre vulnerable to HyperaridHyperarid areasareas Map produced by ZOÏ Environment Network, September 2010 Source: UNEP World Conservation Monitoring Centre desertification MapMap producedproduced byby ZOÏZOÏ EnvironmentEnvironment Network,Network, SeptemberSeptember 20102010 Source:Source: UNEUNEPP WWorldorld ConservationConservation MonitoringMonitoring
    [Show full text]