Targeted Fauna Assessment.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Australian Diurnal Raptors and Airports
Australian diurnal raptors and airports Photo: John Barkla, BirdLife Australia William Steele Australasian Raptor Association BirdLife Australia Australian Aviation Wildlife Hazard Group Forum Brisbane, 25 July 2013 So what is a raptor? Small to very large birds of prey. Diurnal, predatory or scavenging birds. Sharp, hooked bills and large powerful feet with talons. Order Falconiformes: 27 species on Australian list. Family Falconidae – falcons/ kestrels Family Accipitridae – eagles, hawks, kites, osprey Falcons and kestrels Brown Falcon Black Falcon Grey Falcon Nankeen Kestrel Australian Hobby Peregrine Falcon Falcons and Kestrels – conservation status Common Name EPBC Qld WA SA FFG Vic NSW Tas NT Nankeen Kestrel Brown Falcon Australian Hobby Grey Falcon NT RA Listed CR VUL VUL Black Falcon EN Peregrine Falcon RA Hawks and eagles ‐ Osprey Osprey Hawks and eagles – Endemic hawks Red Goshawk female Hawks and eagles – Sparrowhawks/ goshawks Brown Goshawk Photo: Rik Brown Hawks and eagles – Elanus kites Black‐shouldered Kite Letter‐winged Kite ~ 300 g Hover hunters Rodent specialists LWK can be crepuscular Hawks and eagles ‐ eagles Photo: Herald Sun. Hawks and eagles ‐ eagles Large ‐ • Wedge‐tailed Eagle (~ 4 kg) • Little Eagle (< 1 kg) • White‐bellied Sea‐Eagle (< 4 kg) • Gurney’s Eagle Scavengers of carrion, in addition to hunters Fortunately, mostly solitary although some multiple strikes on aircraft Hawks and eagles –large kites Black Kite Whistling Kite Brahminy Kite Frequently scavenge Large at ~ 600 to 800 g BK and WK flock and so high risk to aircraft Photo: Jill Holdsworth Identification Beruldsen, G (1995) Raptor Identification. Privately published by author, Kenmore Hills, Queensland, pp. 18‐19, 26‐27, 36‐37. -
Cacomantis Merulinus) Nestlings and Their Common Tailorbird (Orthotomus Sutorius) Hosts Odd Helge Tunheim1, Bård G
Tunheim et al. Avian Res (2019) 10:5 https://doi.org/10.1186/s40657-019-0143-z Avian Research RESEARCH Open Access Development and behavior of Plaintive Cuckoo (Cacomantis merulinus) nestlings and their Common Tailorbird (Orthotomus sutorius) hosts Odd Helge Tunheim1, Bård G. Stokke1,2, Longwu Wang3, Canchao Yang4, Aiwu Jiang5, Wei Liang4, Eivin Røskaft1 and Frode Fossøy1,2* Abstract Background: Our knowledge of avian brood parasitism is primarily based on studies of a few selected species. Recently, researchers have targeted a wider range of host–parasite systems, which has allowed further evaluation of hypotheses derived from well-known study systems but also disclosed adaptations that were previously unknown. Here we present developmental and behavioral data on the previously undescribed Plaintive Cuckoo (Cacomantis merulinus) nestling and one of its hosts, the Common Tailorbird (Orthotomus sutorius). Methods: We discovered more than 80 Common Tailorbird nests within an area of 25 km2, and we recorded nestling characteristics, body mass, tarsus length and begging display every 3 days for both species. Results: Plaintive Cuckoo nestlings followed a developmental pathway that was relatively similar to that of their well-studied relative, the Common Cuckoo (Cuculus canorus). Tailorbird foster siblings were evicted from the nest rim. The cuckoo nestlings gained weight faster than host nestlings, and required 3–9 days longer time to fedge than host nestlings. Predation was high during the early stages of development, but the nestlings acquired a warning display around 11 days in the nest, after which none of the studied cuckoo nestlings were depredated. The cuckoos’ begging display, which appeared more intense than that of host nestlings, was initially vocally similar with that of the host nestlings but began to diverge from the host sound output after day 9. -
Birding Oxley Creek Common Brisbane, Australia
Birding Oxley Creek Common Brisbane, Australia Hugh Possingham and Mat Gilfedder – January 2011 [email protected] www.ecology.uq.edu.au 3379 9388 (h) Other photos, records and comments contributed by: Cathy Gilfedder, Mike Bennett, David Niland, Mark Roberts, Pete Kyne, Conrad Hoskin, Chris Sanderson, Angela Wardell-Johnson, Denis Mollison. This guide provides information about the birds, and how to bird on, Oxley Creek Common. This is a public park (access restricted to the yellow parts of the map, page 6). Over 185 species have been recorded on Oxley Creek Common in the last 83 years, making it one of the best birding spots in Brisbane. This guide is complimented by a full annotated list of the species seen in, or from, the Common. How to get there Oxley Creek Common is in the suburb of Rocklea and is well signposted from Sherwood Road. If approaching from the east (Ipswich Road side), pass the Rocklea Markets and turn left before the bridge crossing Oxley Creek. If approaching from the west (Sherwood side) turn right about 100 m after the bridge over Oxley Creek. The gate is always open. Amenities The main development at Oxley Creek Common is the Red Shed, which is beside the car park (plenty of space). The Red Shed has toilets (composting), water, covered seating, and BBQ facilities. The toilets close about 8pm and open very early. The paths are flat, wide and easy to walk or cycle. When to arrive The diversity of waterbirds is a feature of the Common and these can be good at any time of the day. -
Wetlands Australia
Wetlands Australia National wetlands update August 2014—Issue No 25 Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment. © Copyright Commonwealth of Australia, 2014 Wetlands Australia National Wetlands Update August 2014 – Issue No 25 is licensed by the Commonwealth of Australia for use under a Creative Commons By Attribution 3.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: http://creativecommons.org/licenses/by/3.0/au This report should be attributed as ‘Wetlands Australia National Wetlands Update August 2015 – Issue No 25, Commonwealth of Australia 2014’ The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Cover images Front cover: Wetlands provide important habitats for waterbirds, such as this adult great egret (Ardea modesta) at Leichhardt Lagoon in Queensland (© Copyright, Brian Furby) Back cover: Inland wetlands, like Narran Lakes Nature Reserve Ramsar site in New South Wales, support high numbers of waterbird breeding and provide refuge for birds during droughts (© Copyright, Dragi Markovic) ii / Wetlands Australia August 2014 Contents Introduction to Wetlands Australia August -
A Guide to the Birds of Barrow Island
A Guide to the Birds of Barrow Island Operated by Chevron Australia This document has been printed by a Sustainable Green Printer on stock that is certified carbon in joint venture with neutral and is Forestry Stewardship Council (FSC) mix certified, ensuring fibres are sourced from certified and well managed forests. The stock 55% recycled (30% pre consumer, 25% post- Cert no. L2/0011.2010 consumer) and has an ISO 14001 Environmental Certification. ISBN 978-0-9871120-1-9 Gorgon Project Osaka Gas | Tokyo Gas | Chubu Electric Power Chevron’s Policy on Working in Sensitive Areas Protecting the safety and health of people and the environment is a Chevron core value. About the Authors Therefore, we: • Strive to design our facilities and conduct our operations to avoid adverse impacts to human health and to operate in an environmentally sound, reliable and Dr Dorian Moro efficient manner. • Conduct our operations responsibly in all areas, including environments with sensitive Dorian Moro works for Chevron Australia as the Terrestrial Ecologist biological characteristics. in the Australasia Strategic Business Unit. His Bachelor of Science Chevron strives to avoid or reduce significant risks and impacts our projects and (Hons) studies at La Trobe University (Victoria), focused on small operations may pose to sensitive species, habitats and ecosystems. This means that we: mammal communities in coastal areas of Victoria. His PhD (University • Integrate biodiversity into our business decision-making and management through our of Western Australia) -
Review of the Ecology, Status and Modelling of Waterbird Populations of the Coorong South Lagoon
Review of the ecology, status and modelling of waterbird populations of the Coorong South Lagoon Thomas A. A. Prowse Goyder Institute for Water Research Technical Report Series No. 20/12 www.goyderinstitute.org Goyder Institute for Water Research Technical Report Series ISSN: 1839-2725 The Goyder Institute for Water Research is a research alliance between the South Australian Government through the Department for Environment and Water, CSIRO, Flinders University, the University of Adelaide and the University of South Australia. The Institute facilitates governments, industries, and leading researchers to collaboratively identify, develop and adopt innovative solutions for complex water management challenges to ensure a sustainable future. This program is part of the Department for Environment and Water’s Healthy Coorong Healthy Basin Program, which is jointly funded by the Australian and South Australian Governments. Enquires should be addressed to: Goyder Institute for Water Research 209A Darling Building, North Terrace The University of Adelaide, Adelaide SA 5005 tel: (08) 8313 5020 e-mail: [email protected] Citation Prowse TAA (2020) Review of the ecology, status and modelling of waterbird populations of the Coorong South Lagoon. Goyder Institute for Water Research Technical Report Series No. 20/12. © Crown in right of the State of South Australia, Department for Environment and Water, The University of Adelaide. Disclaimer This report has been prepared by The University of Adelaide (as the Goyder Institute for Water Research partner organisation) and contains independent scientific/technical advice to inform government decision- making. The independent findings and recommendations of this report are subject to separate and further consideration and decision-making processes and do not necessarily represent the views of the Australian Government or the South Australian Department for Environment and Water. -
Bird Vulnerability Assessments
Assessing the vulnerability of native vertebrate fauna under climate change, to inform wetland and floodplain management of the River Murray in South Australia: Bird Vulnerability Assessments Attachment (2) to the Final Report June 2011 Citation: Gonzalez, D., Scott, A. & Miles, M. (2011) Bird vulnerability assessments- Attachment (2) to ‘Assessing the vulnerability of native vertebrate fauna under climate change to inform wetland and floodplain management of the River Murray in South Australia’. Report prepared for the South Australian Murray-Darling Basin Natural Resources Management Board. For further information please contact: Department of Environment and Natural Resources Phone Information Line (08) 8204 1910, or see SA White Pages for your local Department of Environment and Natural Resources office. Online information available at: http://www.environment.sa.gov.au Permissive Licence © State of South Australia through the Department of Environment and Natural Resources. You may copy, distribute, display, download and otherwise freely deal with this publication for any purpose subject to the conditions that you (1) attribute the Department as the copyright owner of this publication and that (2) you obtain the prior written consent of the Department of Environment and Natural Resources if you wish to modify the work or offer the publication for sale or otherwise use it or any part of it for a commercial purpose. Written requests for permission should be addressed to: Design and Production Manager Department of Environment and Natural Resources GPO Box 1047 Adelaide SA 5001 Disclaimer While reasonable efforts have been made to ensure the contents of this publication are factually correct, the Department of Environment and Natural Resources makes no representations and accepts no responsibility for the accuracy, completeness or fitness for any particular purpose of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of this publication. -
A Year on the Vasse-Wonnerup Wetlands
Department of Biodiversity, Conservation and Attractions Department of Primary Industries and Regional Development Department of Water and Environmental Regulation A Year on the Vasse-Wonnerup Wetlands An Ecological Snapshot March 2017—January 2018 W IN N T M E U R T U A S P R R I N E G M M U S Musk duck (Biziura lobata) (Photo: Mark Oliver) The Vasse-Wonnerup Wetlands The conservation values of the Vasse-Wonnerup wetlands are recognised on a local, state, national and international level. The wetlands provide habitat to thousands of Australian and migratory water birds as well as supporting the largest breeding population of black swans in the state. In 1990 the wetlands were recognised as a ‘Wetland of International Importance’ under the Ramsar Convention. The wetlands are also one of the most nutrient enriched wetlands in Western Australia, characterised by extensive macroalgae and phytoplankton blooms and occasional major fish kills. Poor water quality in the wetlands is a major concern for the local community. Over the past four years scientists have been working together to investigate options to improve water quality in the wetlands by monitoring seawater inflows through the Vasse surge barrier and modelling options to increase water levels and flows into the Vasse estuary. These trials have successfully shown that seawater inflows can reduce the incidence of harmful phytoplankton blooms and improve conditions for fish in the Vasse Estuary Channel over summer months. What isn’t as well understood is how these management approaches and subsequent increased water levels may impact on the broader wetland system, especially how the ecology of the wetlands responds to changes in the timing and volume of seawater inflow through the surge barriers. -
A 2010 Supplement to Ducks, Geese, and Swans of the World
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible. -
Notes on the Parasitic Ecology of Newly-Fledged Fan-Tailed Cuckoos Cacomantis Flabelliformis and Their White-Browed Scrubwren Se
162 The Sunbird 2019, Vol 48 / Colleen Poje et al Notes on the parasitic ecology of newly-fledged Fan-tailed Cuckoos Cacomantis flabelliformis and their White-browed Scrubwren Sericornis frontalis hosts in south-east Queensland Colleen Poje1*, James A. Kennerley1,2*, Nicole M. Richardson1, Zara-Louise Cowan1, Maggie R. Grundler1,3,4, Matthew Marsh1, William E. Feeney1* 1 Environmental Futures Research Institute, Griffith University, Nathan 4111, Australia 2 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom 3Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, USA 4Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, 94720, USA *Correspond with: [email protected] , [email protected] , [email protected] Abstract Despite brood parasitic cuckoos being the subject of much scientific attention, in large part due to the study of the adaptation-counter adaptation evolutionary “arms-races” that they have with their hosts, there is surprisingly little literature on the natural habits of newly-fledged cuckoos. Generally, it is believed that after depositing their egg in their host’s nest, adult cuckoos provide no parental care and care is only provided by the foster parents. However, intriguing records of adult cuckoos feeding newly-fledged cuckoos and provisioning by adult birds other than the cuckoo’s host parents exist. Fledged-but-dependent Fan-tailed Cuckoos Cacomantis flabelliformis have been recorded to be fed by both adult conspecifics and a variety of non-foster parent adult birds, making it an interesting species to begin investigating why these phenomena exist. Here, we followed seven fledged but dependent Fan- tailed Cuckoos over the course of three months (August – October 2017) at Lake Samsonvale in south-east Queensland, Australia, to investigate their feeding ecology and record interactions between them and other species. -
Macquarie River Bird Trail
Bird Watching Trail Guide Acknowledgements RiverSmart Australia Limited would like to thank the following for their assistance in making this trail and publication a reality. Tim and Janis Hosking, and the other members of the Dubbo Field Naturalists and Conservation Society, who assisted with technical information about the various sites, the bird list and with some of the photos. Thanks also to Jim Dutton for providing bird list details for the Burrendong Arboretum. Photographers. Photographs were kindly provided by Brian O’Leary, Neil Zoglauer, Julian Robinson, Lisa Minner, Debbie Love, Tim Hosking, Dione Carter, Dan Giselsson, Tim Ralph and Bill Phillips. This project received financial support from the Australian Bird Environment Foundation of Sacred kingfisher photo: Dan Giselsson BirdLife Australia. Thanks to Warren Shire Council, Sarah Derrett and Ashley Wielinga in particular, for their assistance in relation to the Tiger Bay site. Thanks also to Philippa Lawrence, Sprout Design and Mapping Services Australia. THE MACQuarIE RIVER TraILS First published 2014 The Macquarie valley, in the heart of NSW is one of the The preparation of this guide was coordinated by the not-for-profit organisation Riversmart State’s — and indeed Australia’s — best kept secrets, until now. Australia Ltd. Please consider making a tax deductible donation to our blue bucket fund so we can keep doing our work in the interests of healthy and sustainable rivers. Macquarie River Trails (www.rivertrails.com.au), launched in late 2011, is designed to let you explore the many attractions www.riversmart.org.au and wonders of this rich farming region, one that is blessed See outside back cover for more about our work with a vibrant river, the iconic Maquarie Marshes, friendly people and a laid back lifestyle. -
Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.