Sortase-Catalysed Anchoring of Surface Proteins to the Cell Wall of Staphylococcus Aureus

Total Page:16

File Type:pdf, Size:1020Kb

Sortase-Catalysed Anchoring of Surface Proteins to the Cell Wall of Staphylococcus Aureus Molecular Microbiology 2001) 40 5), 1049±1057 MicroReview Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus Sarkis K. Mazmanian, Hung Ton-That and properties that may explain why these microbes can cause Olaf Schneewind* abscesses at many anatomical sites Flock, 1999). In all Department of Microbiology and Immunology, cases examined, the adhesive and serum-binding proper- UCLA School of Medicine, 10833 Le Conte Avenue, ties of staphylococci have been traced back to the Los Angeles, CA 90095, USA. expression of surface proteins Foster and HoÈoÈk, 1998). Many of these surface proteins are anchored to the cell wall envelope by a mechanism that requires a C-terminal cell wall Summary sorting signal Cws) Navarre and Schneewind, 1999). Many surface proteins of Gram-positive bacteria are anchored to the cell wall envelope by a transpeptida- tion mechanism, requiring a C-terminal sorting signal Protein A ± a cell wall-anchored surface protein with a conserved LPXTG motif. Sortase, a membrane protein of Staphylococcus aureus, cleaves polypep- Protein A, the first identified surface protein of S. aureus, tides between the threonine and the glycine of the binds to the Fc portion of antibodies and causes precipitation LPXTG motif and catalyses the formation of an of immunoglobulin Ig) Jensen, 1958; SjoÈdahl, 1977). The amide bond between the carboxyl-group of threonine N-terminal region of protein A, including five Ig-binding and the amino-group of peptidoglycan cross-bridges. domains, is displayed on the bacterial surface, whereas S. aureus mutants lacking the srtA gene fail to anchor the C-terminal region X is buried in the cell wall envelope and display some surface proteins and are impaired SjoÈquist et al., 1972a; Guss et al., 1984). SjoÈquist and in the ability to cause animal infections. Sortase acts colleagues showed that cleavage of the staphylococcal on surface proteins that are initiated into the secre- peptidoglycan withlysostaphin,a glycyl-glycine endopep- tion +Sec) pathway and have their signal peptide tidase that cuts cell wall cross-bridges, solubilizes protein removed by signal peptidase. The S. aureus genome A as a species withuniform mass SjoÈquist et al., 1972b). encodes two sets of sortase and secretion genes. It is Digestion of the glycan strands with muramidase releases conceivable that S. aureus has evolved more than protein A as a spectrum of polypeptide fragments with one pathway for the transport of 20 surface proteins linked cell wall SjoÈquist et al., 1972a, b). Molecular to the cell wall envelope. cloning and DNA sequencing of the spa gene revealed that protein A is synthesized as a precursor, containing an N-terminal signal peptide that directs the polypeptide into Introduction the secretory Sec) pathway LoÈfdahl et al., 1983; UhleÂn et al., 1984). The predicted C-terminus of protein A Staphylococcus aureus is an important human pathogen harbours the 35-residue Cws that is conserved in surface that causes abscesses in many organ tissues, septicaemia proteins of Gram-positive bacteria Fischetti et al., 1990; and several other diseases Lowy, 1998). Molecular Schneewind et al., 1992). An LPXTG motif is followed by biologists have examined staphylococci for many years in a hydrophobic domain and a tail of mostly positively an effort to explain the extraordinary pathogenic potential of charged residues Fischetti et al., 1990). Although Cws this microorganism Novick, 1991). S. aureus is capable of resemble known membrane anchor peptides, the hydro- binding several human serum factors Foster and HoÈoÈk, phobic domain of protein A and other Cws cannot insert 1998). Multiple pathogenic strategies have been suspected, fused reporter proteins into the lipid bilayer Schneewind and staphylococcal resistance to phagocytic killing seems to et al., 1992). Truncation of the Cws charged tail causes be the underlying goal in binding serum proteins. Staphylo- staphylococci to secrete mutant protein A into the extra- cocci also adhere to several different human tissues, cellular medium Schneewind et al., 1992). In contrast, Accepted 15 February, 2001. *For correspondence. E-mail olafs@ deletion of the LPXTG motif prevents cleavage and cell ucla.edu; Tel. 11) 310 206 0997; Fax 11) 310 267 0173. wall anchoring of protein A; mutant polypeptides fractionate Q 2001 Blackwell Science Ltd 1050 S. K. Mazmanian, H. Ton-That and O. Schneewind withthecell wall and cytoplasmic membrane compart- subsequently identified Cws. This procedure identified ments Schneewind et al., 1992). When tethered to the C- 19 surface protein genes Table 1). Nine genes encode terminus of polypeptides bearing N-terminal signal pep- the well-characterized surface proteins Spa, FnbA, FnbB tides, the Cws promotes anchoring of hybrid polypeptides fibrinonectin-binding proteins), ClfA, ClfB fibrinogen- to the cell wall envelope Pozzi et al., 1992; Schneewind binding clumping factors), SdrC, SdrD, SdrE and Pls et al., 1993; Medaglini et al., 1995; Navarre and Schnee- [containing serine S) aspartate D) repeat regions wind, 1996; Strauss and GoÈtz, 1996; Piard et al., 1997). upstream of the Cws] UhleÂn et al., 1984; Flock et al., 1987; JoÈnsson et al., 1991; McDevitt et al., 1994; Josefsson et al., 1998a; NõÂ Eidhin et al., 1998). The gene Sorting signals and surface proteins encoding S. aureus collagen adhesin Cna), a Cws-bearing Ten Cws of surface proteins from different Gram-positive adhesin for bone tissue Patti et al., 1992), is not present in bacteria have been fused to the C-terminus of either the four S. aureus genome sequences. Cna is found in truncated protein A lacking its own Cws or staphylococcal staphylococcal isolates from bone and connective tissue enterotoxin B Seb) Schneewind et al., 1993). Five Cws infections Patti et al., 1994). Ten genes encode unknown were functional in staphylococci and caused cell wall surface proteins, herein referred to as sas S. aureus anchoring of hybrid proteins. Some of the non-functional surface protein). All surface proteins appear to be exported Cws were altered by mutation and examined again for by an N-terminal signal peptide. The Cws is invariably anchoring. In all cases examined, the mutant Cws could located at the C-terminal end and contains LPXTG gain function, which required an alteration in the residue sequences withvariable residues at theX and T positions. spacing between the LPXTG motif and the positively One Cws has a replacement of alanine A) for threonine T). charged tail Schneewind et al., 1993). Mutational The X position can be occupied by acidic [glutamate E), analysis of the protein A Cws revealed that two arginines aspartate D)], uncharged [alanine A), glutamine Q), R), positioned 31 and 32 residues downstream of the asparagine N)] and basic residues [lysine K)]. LPXTG motif, function as a signal to retain the polypeptide within the secretory pathway. It appears that positive Cell wall anchor structure charge is a signal for retention, as lysine, but not histidine, can substitute for arginines Schneewind et al., 1993). During cell wall anchoring, the Cws of protein A is cleaved The staphylococcal databases were searched for between the threonine and the glycine of the LPXTG motif surface protein genes using the protein A Cws as a Navarre and Schneewind, 1994). The cell wall anchor BLAST search query followed by other searches with structure of surface proteins released from peptidoglycan Table 1. S. aureus surface protein genes sas). sas Codons Ligand Predicted sorting signal Reference spa 508 IgG/vWBF LPETGEENPFIGTTVFGGLSLALGAALLAGRRREL UhleÂn et al. 1984) fnbA 1018 Fibronectin/ LPETGGEESTNKGMLFGGLFSILGLALLRRNKKNHKA SignaÈs et al. 1989) fibrinogen fnbB 914 Fibronectin/ LPETGGEESTNNGMLFGGLFSILGLALLRRNKKNHKA JoÈnsson et al. 1991) fibrinogen clfA 933 Fibrinogen LPDTGSEDEANTSLIWGLLASIGSLLLFRRKKENKDKK McDevitt et al. 1994) clfB 913 Fibrinogen LPETGDKSENTNATLFGAMMALLGSLLLFRKRKQDHKEKA NõÂ Eidhin et al. 1998) cna 1183 Collagen LPKTGMKIITSWITWVLGLYLILRKRFNS Patti et al. 1992) sdrC 947 Unknown LPETGSENNNSNNGTLFGGLFAALGSLLSFGRRKKQNK Josefsson et al. 1998a) sdrD 1315 Calcium LPETGNENSGSNNATLFGGLFAALGSLLLFGRRKKQNK Josefsson et al. 1998a, b) sdrEa 1166 Unknown LPETGSENNGSNNATLFGGLFAALGSLLLFGRRKKQNK Josefsson et al. 1998a) pls 1637 Unknown LPDTGNDAQNNGTLFGSLFAALGGLFLVGRRRKNKNNEEK AF115379b sasA 2261 Unknown LPDTGDSIKQNGLLGGVMTLLVGLGLMKRKKKKDENDQDDSQA sasB 937 Unknown LPDTGMSHNDDLPYAELALGAGMAFLIRRFTKKDQQTEE de Wu and Lencastre 1999); Komatsuzawa et al. 2000) sasC 2186 Unknown LPNTGSEGMDLPLKEFALITGAALLARRRTKN sasD 241 Unknown LPAAGESMTSSILTASIAALLLVSGLFLAFRRRSTNK sasE 354 Unknown LPKTGLTSVDNFISTVAFATLALLGSLSLLLFKRKESK AB042826b sasF 637 Unknown LPKAGETIKEHWLPISVIVGAMGVLMIWLSRRNKLKNKA sasG 1117 Unknown LPKTGLESTQKGLIFSSIIGIAGLMLLARRRKN sasH 308 Unknown LPKTGTNQSSSPEAMFVLLAGIGLIATVRRRKAS sasI 895 Unknown LPKTGETTSSQSWWGLYALLGMLALFIPKFRKESK sasJ 645 Unknown LPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN a. A variant of SdrE binds bone sialoprotein Tung et al., 2000). b. GenBank accession number, Q 2001 Blackwell Science Ltd, Molecular Microbiology, 40, 1049±1057 Surface protein anchoring by sortase 1051 via N-acetylmuramidase, N-acetylglucosaminidase, N- tylicum, Corynebacterium diphtheriae, Enterococcus acetylmuramyl-L-Ala amidase, D-Ala-Gly endopeptidase faecalis, Listeria monocytogenes, Streptococcus mutans, F11 enzyme) and lysostaphin showed that the surface Streptococcus pneumoniae and Streptococcus pyogenes proteins of S. aureus are linked via an amide bond Mazmanian et al.,
Recommended publications
  • Review Article: Inhibition of Methanogenic Archaea by Statins As a Targeted Management Strategy for Constipation and Related Disorders
    Alimentary Pharmacology and Therapeutics Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders K. Gottlieb*, V. Wacher*, J. Sliman* & M. Pimentel† *Synthetic Biologics, Inc., Rockville, SUMMARY MD, USA. † Gastroenterology, Cedars-Sinai Background Medical Center, Los Angeles, CA, USA. Observational studies show a strong association between delayed intestinal transit and the production of methane. Experimental data suggest a direct inhibitory activity of methane on the colonic and ileal smooth muscle and Correspondence to: a possible role for methane as a gasotransmitter. Archaea are the only con- Dr K. Gottlieb, Synthetic Biologics, fi Inc., 9605 Medical Center Drive, rmed biological sources of methane in nature and Methanobrevibacter Rockville, MD 20850, USA. smithii is the predominant methanogen in the human intestine. E-mail: [email protected] Aim To review the biosynthesis and composition of archaeal cell membranes, Publication data archaeal methanogenesis and the mechanism of action of statins in this context. Submitted 8 September 2015 First decision 29 September 2015 Methods Resubmitted 7 October 2015 Narrative review of the literature. Resubmitted 20 October 2015 Accepted 20 October 2015 Results EV Pub Online 11 November 2015 Statins can inhibit archaeal cell membrane biosynthesis without affecting This uncommissioned review article was bacterial numbers as demonstrated in livestock and humans. This opens subject to full peer-review. the possibility of a therapeutic intervention that targets a specific aetiologi- cal factor of constipation while protecting the intestinal microbiome. While it is generally believed that statins inhibit methane production via their effect on cell membrane biosynthesis, mediated by inhibition of the HMG- CoA reductase, there is accumulating evidence for an alternative or addi- tional mechanism of action where statins inhibit methanogenesis directly.
    [Show full text]
  • Cell Structure and Function in the Bacteria and Archaea
    4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth.
    [Show full text]
  • Structure of Bacterial and Archaeal Cells
    © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 4 CHAPTER PREVIEW 4.1 There Is Tremendous Diversity Structure of Among the Bacteria and Archaea 4.2 Prokaryotes Can Be Distinguished by Their Cell Shape and Arrangements Bacterial and 4.3 An Overview to Bacterial and Archaeal Cell Structure 4.4 External Cell Structures Interact Archaeal Cells with the Environment Investigating the Microbial World 4: Our planet has always been in the “Age of Bacteria,” ever since the The Role of Pili first fossils—bacteria of course—were entombed in rocks more than TexTbook Case 4: An Outbreak of 3 billion years ago. On any possible, reasonable criterion, bacteria Enterobacter cloacae Associated with a Biofilm are—and always have been—the dominant forms of life on Earth. —Paleontologist Stephen J. Gould (1941–2002) 4.5 Most Bacterial and Archaeal Cells Have a Cell Envelope “Double, double toil and trouble; Fire burn, and cauldron bubble” is 4.6 The Cell Cytoplasm Is Packed the refrain repeated several times by the chanting witches in Shakespeare’s with Internal Structures Macbeth (Act IV, Scene 1). This image of a hot, boiling cauldron actu- MiCroinquiry 4: The Prokaryote/ ally describes the environment in which many bacterial, and especially Eukaryote Model archaeal, species happily grow! For example, some species can be iso- lated from hot springs or the hot, acidic mud pits of volcanic vents ( Figure 4.1 ). When the eminent evolutionary biologist and geologist Stephen J. Gould wrote the opening quote of this chapter, he, as well as most micro- biologists at the time, had no idea that embedded in these “bacteria” was another whole domain of organisms.
    [Show full text]
  • Comparing Prokaryotic and Eukaryotic Cells
    Comparing Prokaryotic and Eukaryotic Cells Classification of prokaryotic cellular features: Variant (or NOT common to all) Cell Wall (multiple barrier support themes) Endospores (heavy-duty life support strategy) Bacterial Flagella (appendages for movement) Gas Vesicles (buoyancy compensation devices) Capsules/Slime Layer (exterior to cell wall) Inclusion Bodies (granules for storage) Pili (conduit for genetic exchange) Cell walls of Bacteria Cell envelope structure E. coli structure of peptidoglycan aka murein Peptidoglycan of a gram-positive bacterium Bond broken by penicillin DAP or Diaminopimelic acid Lysine Overall structure of peptidoglycan Cell walls of gram-positive and gram-negative bacteria Teichoic acids and the overall structure of the gram-positive cell wall Summary diagram of the gram-positive cell wall Cell envelopes of Bacteria Cell envelopes of Bacteria Structure of the lipopolysaccharide of gram-negative Bacteria The gram-negative cell wall N-Acetyltalosaminuronic acid Pseudopeptidoglycan of Archaea Paracrystalline S-layer: A protein jacket for Bacteria & Archaea Formation of the endospore Morphology of the bacterial endospore (a) Terminal (b) Subterminal (c) Central (a) Structure of Dipicolinic Acid & (b) crosslinked with Ca++ Bacterial flagella (a) Polar (aka monotrichous) & (b) Peritrichous Structure of the bacterial flagellum Flagellar Motility: Relationship of flagellar rotation to bacterial movement. Gas Vesicles (a) Anabaena flos-aquae (b) Microcystis sp. Hammer & Stopper Experiment (Before) (After) Model of how the two proteins that make up the gas vesicle, GvpA and GvpC, interact to form a watertight but gas-permeable structure. β-sheet α-helix Bacterial Capsules (a) Acinetobacter sp. (b) Rhizobium trifolii negative stain Storage of PHB Sulfur globules inside the purple sulfur bacterium Isochromatium buderi Magnetotactic bacteria with Fe3O4 (magnetite) particles called magnetosomes EM of Salmonella typhi “Sex” Pili used in bacterial conjugation of E.
    [Show full text]
  • Détection Et Culture Des Archaea Associées Aux Muqueuses
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE THESE DE DOCTORAT Présentée par Saber KHELAIFIA En vue de l'obtention du grade de Docteur de l'Université Aix-Marseille Spécialité: Maladies Transmissibles et Pathologies Tropicales Détection et culture des archaea associées aux muqueuses intestinale et orale humaines Soutenue le 07 Juin 2013 COMPOSITION DU JURY Mr le Professeur Jean-Louis Mège Président du jury Mr le Docteur Bruno Franzetti Rapporteur Mr le Professeur Max Maurin Rapporteur Mr le Professeur Michel Drancourt Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS6236 Prof – Didier Raoult 2013 Avant propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue publiée dans un journal scientifique afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Prevalence and Characterization of Staphylococcus Species
    PREVALENCE AND CHARACTERIZATION OF STAPHYLOCOCCUS SPECIES, INCLUDING MRSA, IN THE HOME ENVIRONMENT HONORS THESIS Presented to the Honors College of Texas State University in Partial Fulfillment of the Requirements for Graduation in the Honors College by Heather Ryan Hansen San Marcos, Texas May 2019 PREVALENCE AND CHARACTERIZATION OF STAPHYLOCOCCUS SPECIES, INCLUDING MRSA, IN THE HOME ENVIRONMENT by Heather Ryan Hansen Thesis Supervisor: _____________________________________ Rodney E Rohde, Ph.D. Clinical Laboratory Science Program Approved: _____________________________________ Heather C. Galloway, Ph.D. Dean, Honors College COPYRIGHT by Heather Ryan Hansen May 2019 FAIR USE AND AUTHOR’S PERMISSIONS STATEMENT Fair Use This work is protected by the Copyright Laws of the United Sates (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author’s express written permissions is not allowed. Duplication Permission As the copyright holder of this work I, Heather Ryan Hansen, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. ACKNOWLEDGMENTS I first would like to acknowledge that this thesis builds upon the unpublished work of Dr. Rodney E. Rohde, Professor Tom Patterson, Maddy Tupper and Kelsi Vickers, (upper classmen) whom I assisted in specimen collection a year prior. I would like to thank my thesis supervisor Dr. Rodney E. Rohde, who spent countless hours reviewing my work to help me bring this thesis to life. I thank him for all of the support, guidance, and motivation that he has provided me throughout my thesis writing process.
    [Show full text]
  • Chapter 03 Lecture
    Chapter 03 Lecture 1 The Prokaryotic Cell Pilus Ribosomes Cytoplasm Chromosome (DNA) Nucleoid Cell wall Flagellum (b) 0.5 µm Capsule Cell wall Cytoplasmic membrane (a) The Prokaryotic Cell 3.4. The Cytoplasmic Membrane . Cytoplasmic membrane defines boundary of cell • Phospholipid bilayer embedded with proteins • Hydrophobic tails face in; hydrophilic tails face out • Serves as semipermeable membrane • Proteins serve numerous functions • Selective gates • Sensors of environmental conditions Phospholipid bilayer • Fluid mosaic model: proteins drift about in lipid bilayer Hydrophilic head Hydrophobic tail Proteins 3.4. The Cytoplasmic Membrane . Cytoplasmic membrane defines boundary of cell (continued…) • Bacteria and Archaea have same general structure of cytoplasmic membranes • Distinctly different lipid compositions • Lipid tails of Archaea are not fatty acids and are connected differently to glycerol Permeability of Lipid Bilayer . Cytoplasmic membrane is selectively permeable • O2, CO2, N2, small hydrophobic molecules, and water pass freely • Some cells facilitate water passage with aquaporins • Other molecules must be moved across membrane via transport systems Pass through easily: Passes through: Do not pass through: Gases (O2, CO2, N2) Water Sugars Small hydrophobic Ions molecules Amino acids ATP Water Macromolecules Aquaporin (a) The cytoplasmic membrane is selectively permeable. Gases, small (b) Aquaporins allow water to pass through the cytoplasmic membrane hydrophobic molecules, and water are the only substances that more easily.
    [Show full text]
  • Partial Purification and Characterization of F₄₂₀- Dependent NADP Reductase from Methanobrevibacter Smithii Strain DE1
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1985 Partial purification and characterization of F₄₂₀- dependent NADP reductase from Methanobrevibacter smithii strain DE1 Scott D. Sheridan Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Enzymes and Coenzymes Commons Let us know how access to this document benefits ou.y Recommended Citation Sheridan, Scott D., "Partial purification and characterization of F₄₂₀-dependent NADP reductase from Methanobrevibacter smithii strain DE1" (1985). Dissertations and Theses. Paper 3523. https://doi.org/10.15760/etd.5407 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. AN ABSTRACT OF THE THESIS OF Scott D, Sheridan for the Master of Science in Biology presented July 26, 1985. Title: Partial Purification and Characterization of F -dependent 420 NADP Reductase from Methanobrevibacter smithii strain DEl APPROVED BY MEMBERS OF THE THESIS COMMITTEE: L. D. Eirich, Chairman P: L. O'Neill D. Barnum, Graduate Office Representative The F -dependent NADP reductase of Methanobrevibacter 420 smithii has been partially purified employing a combination of affinity chromatography with Blue Sepharose (Cl-6B) and molecular sieve chromatography with Sephacryl S-200, The enzyme, which re- 2 quires reduced F420 as an electron donor, has been purified over 145 fold with a recovery of 6%. A molecular weight of 120,00 for the native enzyme was determined by Sephacryl S-200 chromatography.
    [Show full text]
  • Investigating the Mode of Action of Fatty Acids Against Rumen Methanogens
    Research Collection Doctoral Thesis Investigating the mode of action of fatty acids against rumen methanogens Author(s): Zhou, Xuan Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010510909 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.22675 Investigating the mode of action of fatty acids against rumen methanogens A dissertation submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. Sc. ETH Zürich) Presented by Xuan Zhou Nanjing Agricultural University, China MSc Agr. Born 09.03.1986 Citizen of China Accepted on the recommendation of Prof. Dr. Michael Kreuzer, examiner Prof. Dr. Leo Meile, co-examiner Dr. Angela Schwarm, co-examiner Dr. Johanna Zeitz, co-examiner 2015 As tiny as me In the giant universe Home not to everywhere However the most dangerous and hostile corners As dark as dungeon As radiated as nuclear As acid as king's water As alkaline as Alkali Lake As hot as black smoker As cold as iceberg Where I survive, my families thrive As ancient as me Witness the footprints of history As simple as me Delicate my whole life to dancing on evolutionary stage Catch my tail if you could human Wizard will reveal you a secret On where did you come from On where are you heading to ---A little piece of poem dedicate to Archaea Table of content Table of content ...................................................................................................................................... I List of Abbreviations ........................................................................................................................... IV List of Tables ........................................................................................................................................
    [Show full text]
  • DAMICO-DISSERTATION-2014.Pdf
    Copyright by Lorenzo D’Amico 2014 The Dissertation Committee for Lorenzo D’Amico Certifies that this is the approved version of the following dissertation: Isolation of Microorganisms from Biological Specimens by Dielectrophoresis Committee: Peter R.C. Gascoyne, supervisor James Bankson, co-supervisor Javier A. Adachi Andrew Dunn Al Bovik Isolation of Microorganisms from Biological Specimens by Dielectrophoresis by Lorenzo D’Amico, B.S., M.S.E. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2014 Acknowledgements This work was possible only through the efforts of so many people. I want to recognize my family for their unconditional love through this journey, and taught me that fortune favors the bold. My mentor and friend, Peter RC Gascoyne, offered far more than guidance; he gave me a world-class laboratory, complete with pre-historic electronics and blood-stained pumps. He taught me so much about science and about life. I cannot think of a better place to begin a career in bioengineering research. I owe so much to Javier Adachi. When not saving lives, Javier made time to help me understand the real challenges that clinicians face in managing infections. I want to acknowledge others in the lab: Fred Becker, Tom Anderson, Jamileh Noshari, Sangjo Shim, and Jason Haber for all the help they offered during my studies. I want to thank Mia Markey and Gary Rylander for awarding me the NIBIB Imaging Sciences training grant.
    [Show full text]
  • Cell Structure and Function in the Bacteria and Archaea
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION ChapterCh t PreviewPi and dK Key Concepts © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4.1 DiversityNOT Among FOR the Bacteria SALE and OR Archaea DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 1. The Bacteria are classified into several Cell Structure major phyla. 2. The Archaea are currently classified into two major phyla. © Jones4.2 Cell & Shapes Bartlett and Learning,Arrangements LLC and© Jones & FunctionBartlett Learning, LLC NOT FOR3. ManySALE bacterial OR cells DISTRIBUTION have a rod, spherical, or NOT FOR SALE OR DISTRIBUTION spiral shape and are organized into a specific cellular arrangement. 4.3 An Overview to Bacterial and Archaeal in the Bacteria Cell Structure 4. Bacterial and archaeal cells© Jonesare organized & Bartlettat Learning, LLC © Jones & Bartlett Learning, LLC the cellular and molecularNOT levels. FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 4.4 External Cell Structures and Archaea 5. Pili allow cells to attach to surfaces or other cells. 6. Flagella provide motility. 7. A glycocalyx protects against desiccation, Our planet has always been in the “Age of Bacteria,” ever since attaches© Jones cells to surfaces, & Bartlett and helps Learning, LLCthe first fossils—bacteria© of Jones course—were & Bartlett entombed Learning, in rocks LLCmore pathogensNOT evade FOR the SALE immune system.OR DISTRIBUTIONthan 3 billion years ago. NOTOn any FOR possible, SALE reasonable OR DISTRIBUTION criterion, 4.5 The Cell Envelope bacteria are—and always have been—the dominant forms of life 8.
    [Show full text]
  • Comparing Prokaryotic and Eukaryotic Cells Cell Walls of Bacteria Cell Envelope Structure
    Cell walls of Bacteria Comparing Prokaryotic and Eukaryotic Cells Classification of prokaryotic cellular features: Variant (or NOT common to all) Cell Wall (multiple barrier support themes) Endospores (heavy-duty life support strategy) Bacterial Flagella (appendages for movement) Gas Vesicles (buoyancy compensation devices) Capsules/Slime Layer (exterior to cell wall) Inclusion Bodies (granules for storage) Pili (conduit for genetic exchange) Cell envelope structure E. coli structure of peptidoglycan aka murein Peptidoglycan of a gram-positive bacterium Bond broken by penicillin DAP or Diaminopimelic acid Lysine 1 Cell walls of gram-positive and gram-negative bacteria Overall structure of peptidoglycan Teichoic acids and the overall structure of the gram-positive cell wall Summary diagram of the gram-positive cell wall Cell envelopes of Bacteria 2 Cell envelopes of Bacteria Structure of the lipopolysaccharide of gram-negative Bacteria The gram-negative cell wall N-Acetyltalosaminuronic acid Pseudopeptidoglycan of Archaea Paracrystalline S-layer: A protein jacket for Bacteria & Archaea Formation of the endospore 3 Morphology of the bacterial endospore (a) Terminal (b) Subterminal (c) Central (a) Structure of Dipicolinic Acid & (b) crosslinked with Ca++ Structure of the bacterial flagellum Bacterial flagella (a) Polar (aka monotrichous) & (b) Peritrichous 4 Flagellar Motility: Relationship of flagellar rotation to bacterial movement. Gas Vesicles (a) Anabaena flos-aquae (b) Microcystis sp. Hammer & Stopper Experiment Model of how the two proteins that make up the (Before) (After) gas vesicle, GvpA and GvpC, interact to form a watertight but gas-permeable structure. β-sheet α-helix 5 Bacterial Capsules (a) Acinetobacter sp. (b) Rhizobium trifolii Storage of PHB negative stain Magnetotactic bacteria with Fe3O4 (magnetite) particles called magnetosomes Sulfur globules inside the purple sulfur bacterium Isochromatium buderi “Sex” Pili used in bacterial conjugation of E.
    [Show full text]