Cell Structure and Function in the Bacteria and Archaea

Total Page:16

File Type:pdf, Size:1020Kb

Cell Structure and Function in the Bacteria and Archaea © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION ChapterCh t PreviewPi and dK Key Concepts © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4.1 DiversityNOT Among FOR the Bacteria SALE and OR Archaea DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 1. The Bacteria are classified into several Cell Structure major phyla. 2. The Archaea are currently classified into two major phyla. © Jones4.2 Cell & Shapes Bartlett and Learning,Arrangements LLC and© Jones & FunctionBartlett Learning, LLC NOT FOR3. ManySALE bacterial OR cells DISTRIBUTION have a rod, spherical, or NOT FOR SALE OR DISTRIBUTION spiral shape and are organized into a specific cellular arrangement. 4.3 An Overview to Bacterial and Archaeal in the Bacteria Cell Structure 4. Bacterial and archaeal cells© Jonesare organized & Bartlettat Learning, LLC © Jones & Bartlett Learning, LLC the cellular and molecularNOT levels. FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 4.4 External Cell Structures and Archaea 5. Pili allow cells to attach to surfaces or other cells. 6. Flagella provide motility. 7. A glycocalyx protects against desiccation, Our planet has always been in the “Age of Bacteria,” ever since attaches© Jones cells to surfaces, & Bartlett and helps Learning, LLCthe first fossils—bacteria© of Jones course—were & Bartlett entombed Learning, in rocks LLCmore pathogensNOT evade FOR the SALE immune system.OR DISTRIBUTIONthan 3 billion years ago. NOTOn any FOR possible, SALE reasonable OR DISTRIBUTION criterion, 4.5 The Cell Envelope bacteria are—and always have been—the dominant forms of life 8. Bacterial cell walls help maintain cell shape and protect the cell membrane from rupture. on Earth. 9. Archaeal cell walls have crystalline layers. —Paleontologist Stephen J. Gould (1941–2002) 10. Molecules and ions cross the cell membrane © Jones &by Bartlett facilitated diffusionLearning, or active LLC transport. © Jones & Bartlett Learning, LLC “Double, double toil and trouble; Fire burn, and cauldron bubble” is NOT FOR11. ArchaealSALE membranes OR DISTRIBUTION are structurally unique. NOT FOR SALE OR DISTRIBUTION 4.6 The Cell Cytoplasm and Internal the refrain repeated several times by the chanting witches in Shakespeare’s Structures Macbeth (Act IV, Scene 1). This image of a hot, boiling cauldron actually 12. The nucleoid contains the cell’s essential describes the environment in which many bacterial, and especially genetic information. archaeal, species happily grow! For example, some species can be 13. Plasmids contain nonessential© Jones genetic & Bartlettisolated Learning, from LLChot springs or the hot, acidic© mudJones pits & of Bartlett volcanic ventsLearning, LLC information. NOT FOR SALE ORFIGURE DISTRIBUTION 4.1 NOT FOR SALE OR DISTRIBUTION 14. Ribosomes, microcompartments, and ( ). inclusions carry out specific intracellular When the eminent evolutionary biologist and geologist Stephen functions. J. Gould wrote the opening quote of this chapter, he as well as most 15. Cytoskeletal proteins regulate cell division microbiologists had no idea that embedded in these “bacteria” was and help determine cell shape. another whole domain of organisms. Thanks to the pioneering studies MICRO©I NQUIRYJones 4: The& BartlettProkaryote/Eukaryote Learning, LLC © Jones & Bartlett Learning, LLC ModeNOTl FOR SALE OR DISTRIBUTIONof Carl Woese and his colleagues,NOT FOR it SALE now is OR quite DISTRIBUTION evident there are two distinctly different groups of “prokaryotes”—the Bacteria and the Archaea (see Chapter 3). Many of the organisms Woese and others studied are organisms that would live a happy life in a witch’s cauldron © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 96 © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION 4.1 Diversity Among the Bacteria and Archaea 97 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION (A) (B) FIGURE 4.1 Life at the Edge. Bacterial and archaeal extremophiles have been isolated from the edges of natural cauldrons, including (A) the Grand © JonesPrismatic & Bartlett Spring inLearning, Yellowstone National LLC Park, Wyoming, where the ©water Jones of the hot& springBartlett is over Learning, 70ºC, or (B) the LLC mud pools surrounding sulfurous NOT FORsteam SALE vents ofOR the SolfataraDISTRIBUTION Crater in Pozzuoli, Italy, where the mudNOT has a veryFOR low SALEpH and a ORtemperature DISTRIBUTION above 90ºC. »» How do extremophiles survive under these extreme conditions? because they can grow© atJones high temperatures,& Bartlett Learning, as different LLC from each other as they are© Jonesfrom the & Bartlett Learning, LLC produce methane gas,NOT or survive FOR inSALE extremely OR DISTRIBUTIONEukarya. NOT FOR SALE OR DISTRIBUTION acidic and hot environments—a real cauldron! Termed extremophiles, these members of the As more microbes have had their complete domains Bacteria and Archaea have a unique genomes sequenced, it now is clear that there are genetic makeup and have adapted to extreme envi- unique as well as shared characteristics between © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC ronmental conditions. species in the domains Bacteria and Archaea. InNOT fact, Gould’s FOR SALE “first fossils” OR DISTRIBUTION may have been In this chapter,NOT we examine FOR SALE briefly OR some DISTRIBUTION archaeal species. Many microbiologists believe of the organisms in these two domains. However, the ancestors of today’s archaeal species might because so many pathogens of humans are in represent a type of organism that first inhabited the domain Bacteria, we emphasize structure © Jonesplanet & Bartlett Earth whenLearning, it was LLCa young, hot place. within© Jonesthis domain. & Bartlett As we Learning,see in this chapter, LLC NOT FORThese SALE unique OR characteristics DISTRIBUTION led Woese to propose a studyNOT of FOR the structural SALE OR features DISTRIBUTION of bacterial these organisms be lumped together and called the cells provides a window to their activities and Archaebacteria (archae = “ancient”). illustrates how the Bacteria relate to other living Since then, the domain name has been organisms. changed to Archaea because (1) not all members As we examine bacterial (and archaeal) cell are extremophiles or ©related Jones to these& Bartlett possible Learning, structure, LLC we can assess the dogmatic© statement Jones & Bartlett Learning, LLC ancient ancestors and (2)NOT they FOR are not SALE Bacteria— OR DISTRIBUTIONthat these cells are characterized byNOT a lack FOR of a SALE OR DISTRIBUTION they are Archaea. Some might also debate using cell nucleus and internal membrane-bound organ- the term prokaryotes when referring to both elles. Before you finish this chapter, you will be domains, as organisms in the two domains are equipped to revise this view. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 4.1 Diversity Among the Bacteria and Archaea In this section, we discuss bacterial and archaeal bacterial and archaeal species and a suspected diversity using the current classification scheme, 10 million species. In this section, we will high- © Joneswhich & Bartlett is based Learning, in large LLCpart on nucleotide light© a Jonesfew phyla & andBartlett groups Learning, using the phyloge- LLC NOT FORsequence SALE data.OR DISTRIBUTION There are some 7,000 known neticNOT tree inFOR FIGURE SALE 4.2 . OR DISTRIBUTION © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION 98 CHAPTER 4 Cell Structure and Function in the Bacteria and Archaea © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION ARCHAEA BACTERIA (2 major phyla) (>25 major phyla) Euryarchaeota Crenarchaeota Cyanobacteria © Jones & Bartlett Learning, LLC © Jones & BartlettExtreme Learning, LLC Gram-positive halophiles NOT FORbacteria SALE OR DISTRIBUTIONChlamydia MethanogensNOT FOR SALE OR DISTRIBUTION Proteobacteria Spirochaetes © Jones & Bartlett Learning, LLC Hyperthermophiles© Jones & Bartlett Learning,Eukarya LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Hyperthermophiles LAST UNIVERSAL © Jones & Bartlett Learning, LLC © Jones & BartlettCOMMON ANCESTORLearning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION FIGURE 4.2 The Phylogenetic Tree of Bacteria and Archaea. The tree shows several of the bacterial and archaeal lineages discussed in this chapter. »» What is common to the branch base of both the Bacteria and Archaea? © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC The NOTDomain FOR Bacteria SALE ORContains DISTRIBUTION Some They can be isolatedNOT from FOR Arctic SALE ice, thermal OR DISTRIBUTIONhot of the Most Studied Microbial springs, the fringes of space, and the tissues of ani- Organisms mals. Bacterial species, along with their archaeal KEY CONCEPT relatives, have so completely colonized every part 1. The Bacteria are classified into several
Recommended publications
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Review Article: Inhibition of Methanogenic Archaea by Statins As a Targeted Management Strategy for Constipation and Related Disorders
    Alimentary Pharmacology and Therapeutics Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders K. Gottlieb*, V. Wacher*, J. Sliman* & M. Pimentel† *Synthetic Biologics, Inc., Rockville, SUMMARY MD, USA. † Gastroenterology, Cedars-Sinai Background Medical Center, Los Angeles, CA, USA. Observational studies show a strong association between delayed intestinal transit and the production of methane. Experimental data suggest a direct inhibitory activity of methane on the colonic and ileal smooth muscle and Correspondence to: a possible role for methane as a gasotransmitter. Archaea are the only con- Dr K. Gottlieb, Synthetic Biologics, fi Inc., 9605 Medical Center Drive, rmed biological sources of methane in nature and Methanobrevibacter Rockville, MD 20850, USA. smithii is the predominant methanogen in the human intestine. E-mail: [email protected] Aim To review the biosynthesis and composition of archaeal cell membranes, Publication data archaeal methanogenesis and the mechanism of action of statins in this context. Submitted 8 September 2015 First decision 29 September 2015 Methods Resubmitted 7 October 2015 Narrative review of the literature. Resubmitted 20 October 2015 Accepted 20 October 2015 Results EV Pub Online 11 November 2015 Statins can inhibit archaeal cell membrane biosynthesis without affecting This uncommissioned review article was bacterial numbers as demonstrated in livestock and humans. This opens subject to full peer-review. the possibility of a therapeutic intervention that targets a specific aetiologi- cal factor of constipation while protecting the intestinal microbiome. While it is generally believed that statins inhibit methane production via their effect on cell membrane biosynthesis, mediated by inhibition of the HMG- CoA reductase, there is accumulating evidence for an alternative or addi- tional mechanism of action where statins inhibit methanogenesis directly.
    [Show full text]
  • Limits of Life on Earth Some Archaea and Bacteria
    Limits of life on Earth Thermophiles Temperatures up to ~55C are common, but T > 55C is Some archaea and bacteria (extremophiles) can live in associated usually with geothermal features (hot springs, environments that we would consider inhospitable to volcanic activity etc) life (heat, cold, acidity, high pressure etc) Thermophiles are organisms that can successfully live Distinguish between growth and survival: many organisms can survive intervals of harsh conditions but could not at high temperatures live permanently in such conditions (e.g. seeds, spores) Best studied extremophiles: may be relevant to the Interest: origin of life. Very hot environments tolerable for life do not seem to exist elsewhere in the Solar System • analogs for extraterrestrial environments • `extreme’ conditions may have been more common on the early Earth - origin of life? • some unusual environments (e.g. subterranean) are very widespread Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Grand Prismatic Spring, Yellowstone National Park Hydrothermal vents: high pressure in the deep ocean allows liquid water Colors on the edge of the at T >> 100C spring are caused by different colonies of thermophilic Vents emit superheated water (300C or cyanobacteria and algae more) that is rich in minerals Hottest water is lifeless, but `cooler’ ~50 species of such thermophiles - mostly archae with some margins support array of thermophiles: cyanobacteria and anaerobic photosynthetic bacteria oxidize sulphur, manganese, grow on methane + carbon monoxide etc… Sulfolobus: optimum T ~ 80C, minimum 60C, maximum 90C, also prefer a moderately acidic pH. Live by oxidizing sulfur Known examples can grow (i.e. multiply) at temperatures which is abundant near hot springs.
    [Show full text]
  • Microbiology of Endodontic Infections
    Scient Open Journal of Dental and Oral Health Access Exploring the World of Science ISSN: 2369-4475 Short Communication Microbiology of Endodontic Infections This article was published in the following Scient Open Access Journal: Journal of Dental and Oral Health Received August 30, 2016; Accepted September 05, 2016; Published September 12, 2016 Harpreet Singh* Abstract Department of Conservative Dentistry & Endodontics, Gian Sagar Dental College, Patiala, Punjab, India Root canal system acts as a ‘privileged sanctuary’ for the growth and survival of endodontic microbiota. This is attributed to the special environment which the microbes get inside the root canals and several other associated factors. Although a variety of microbes have been isolated from the root canal system, bacteria are the most common ones found to be associated with Endodontic infections. This article gives an in-depth view of the microbiology involved in endodontic infections during its different stages. Keywords: Bacteria, Endodontic, Infection, Microbiology Introduction Microorganisms play an unequivocal role in infecting root canal system. Endodontic infections are different from the other oral infections in the fact that they occur in an environment which is closed to begin with since the root canal system is an enclosed one, surrounded by hard tissues all around [1,2]. Most of the diseases of dental pulp and periradicular tissues are associated with microorganisms [3]. Endodontic infections occur and progress when the root canal system gets exposed to the oral environment by one reason or the other and simultaneously when there is fall in the body’s immune when the ingress is from a carious lesion or a traumatic injury to the coronal tooth structure.response [4].However, To begin the with, issue the if notmicrobes taken arecare confined of, ultimately to the leadsintra-radicular to the egress region of pathogensIn total, and bacteria their by-productsdetected from from the the oral apical cavity foramen fall into to 13 the separate periradicular phyla, tissues.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Marine Microplankton Ecology Reading
    Marine Microplankton Ecology Reading Microbes dominate our planet, especially the Earth’s oceans. The distinguishing feature of microorganisms is their small size, usually defined as less than 200 micrometers (µm); they are all invisible to the naked eye. As a group, sea microbes are extremely diverse, and extremely versatile with respect to their abilities to make and eat food. All marine microbes are too small to swim against the current and are therefore classified as plankton. First we will discuss several ways to classify marine microbes. 1. Size Planktonic marine organisms can be divided into the following size categories: Category Size femtoplankton <0.2 µm picoplankton 0.2-2 µm nanoplankton 2-20 µm microplankton 20-200 µm mesoplankton 200-2000 µm In this laboratory we are concerned with the microscopic portion of the plankton, less than 200 µm. These organisms are not visible to the naked eye (Figure 1). Figure 1. Size classes of marine plankton 2. Type A. Viruses Viruses are the smallest and simplest microplankton. They range from 0.01 to 0.3 um in diameter. Externally, viruses have a capsid, or protein coat. Viruses can also have simple or complex external morphologies with tail fibers and structures that are used to inject DNA or RNA into their host. Viruses have little internal morphology. They do not have a nucleus or organelles. They do not have chlorophyll. Inside a virus there is only nucleic acid, either DNA or RNA. Viruses do not grow and have no metabolism. Marine viruses are highly abundant. There are up to 10 billion in one liter of seawater! B.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Human Microbiome: Your Body Is an Ecosystem
    Human Microbiome: Your Body Is an Ecosystem This StepRead is based on an article provided by the American Museum of Natural History. What Is an Ecosystem? An ecosystem is a community of living things. The living things in an ecosystem interact with each other and with the non-living things around them. One example of an ecosystem is a forest. Every forest has a mix of living things, like plants and animals, and non-living things, like air, sunlight, rocks, and water. The mix of living and non-living things in each forest is unique. It is different from the mix of living and non-living things in any other ecosystem. You Are an Ecosystem The human body is also an ecosystem. There are trillions tiny organisms living in and on it. These organisms are known as microbes and include bacteria, viruses, and fungi. There are more of them living on just your skin right now than there are people on Earth. And there are a thousand times more than that in your gut! All the microbes in and on the human body form communities. The human body is an ecosystem. It is home to trillions of microbes. These communities are part of the ecosystem of the human Photo Credit: Gaby D’Alessandro/AMNH body. Together, all of these communities are known as the human microbiome. No two human microbiomes are the same. Because of this, you are a unique ecosystem. There is no other ecosystem like your body. Humans & Microbes Microbes have been around for more than 3.5 billion years.
    [Show full text]
  • Comparison of Original Gram Stain and Its Modification in the Gingival Plaque Samples
    Journal of Bacteriology & Mycology: Open Access Research Article Open Access Comparison of original gram stain and its modification in the gingival plaque samples Abstract Volume 7 Issue 1 - 2019 Aim: The aim of the study is to compare the characteristics of original gram stain and its Nirmada pukhrambam modifications in the gingival plaque samples. Department of Oral Pathology, Saveetha Dental College, India Background: The gram stain remains the most frequently used rapid diagnostic test. It is described as the corner stone of clinical laboratory. The gram stain divides bacteria Correspondence: Nirmada pukhrambam, Department of Oral Pathology, Saveetha Dental College, India, into gram positive and gram negative on the basis of their cell wall and cell membrane Email permeability. It is a very important preliminary step in the initial characterization and classification of bacteria. When properly interpreted in the light of clinical history, the gram Received: October 03, 2018 | Published: January 22, 2019 stain can provide useful, presumptive information as to the etiology of much infection. Various modifications have been made in the staining pattern for better diagnosis of the micro organisms. Materials and methods: Seven paired gingival plaque samples are collected from seven healthy individuals. One set labeled as original gram and the other set labeled as modified gram. Both the set are heat fixed and stain with two different methods and scored by two different observers who are blind to the study. Results and conclusion: 80.95% of the smear shows good Staining intensity in modified gram stain as compared to the original gram because acetone alcohol mixture gives a better decolourising agent than the normal acetone.
    [Show full text]
  • The Unicellular and Colonial Organisms Prokaryotic And
    The Unicellular and Colonial Organisms Prokaryotic and Eukaryotic Cells As you know, the building blocks of life are cells. Prokaryotic cells are those cells that do NOT have a nucleus. They mostly include bacteria and archaea. These cells do not have membrane-bound organelles. Eukaryotic cells are those that have a true nucleus. That would include plant, animal, algae, and fungal cells. As you can see, to the left, eukaryotic cells are typically larger than prokaryotic cells. Today in lab, we will look at examples of both prokaryotic and eukaryotic unicellular organisms that are commonly found in pond water. When examining pond water under a microscope… The unpigmented, moving microbes will usually be protozoans. Greenish or golden-brown organisms will typically be algae. Microorganisms that are blue-green will be cyanobacteria. As you can see below, living things are divided into 3 domains based upon shared characteristics. Domain Eukarya is further divided into 4 Kingdoms. Domain Kingdom Cell type Organization Nutrition Organisms Absorb, Unicellular-small; Prokaryotic Photsyn., Archaeacteria Archaea Archaebacteria Lacking peptidoglycan Chemosyn. Unicellular-small; Absorb, Bacteria, Prokaryotic Peptidoglycan in cell Photsyn., Bacteria Eubacteria Cyanobacteria wall Chemosyn. Ingestion, Eukaryotic Unicellular or colonial Protozoa, Algae Protista Photosynthesis Fungi, yeast, Fungi Eukaryotic Multicellular Absorption Eukarya molds Plantae Eukaryotic Multicellular Photosynthesis Plants Animalia Eukaryotic Multicellular Ingestion Animals Prokaryotic Organisms – the archaea, non-photosynthetic bacteria, and cyanobacteria Archaea - Microorganisms that resemble bacteria, but are different from them in certain aspects. Archaea cell walls do not include the macromolecule peptidoglycan, which is always found in the cell walls of bacteria. Archaea usually live in extreme, often very hot or salty environments, such as hot mineral springs or deep-sea hydrothermal vents.
    [Show full text]
  • Archaeal Distribution and Abundance in Water Masses of the Arctic Ocean, Pacific Sector
    Vol. 69: 101–112, 2013 AQUATIC MICROBIAL ECOLOGY Published online April 30 doi: 10.3354/ame01624 Aquat Microb Ecol FREEREE ACCESSCCESS Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector Chie Amano-Sato1, Shohei Akiyama1, Masao Uchida2, Koji Shimada3, Motoo Utsumi1,* 1University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan 2National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki 305-8506, Japan 3Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo 108-8477, Japan ABSTRACT: Marine planktonic Archaea have been recently recognized as an ecologically impor- tant component of marine prokaryotic biomass in the world’s oceans. Their abundance and meta- bolism are closely connected with marine geochemical cycling. We evaluated the distribution of planktonic Archaea in the Pacific sector of the Arctic Ocean using fluorescence in situ hybridiza- tion (FISH) with catalyzed reporter deposition (CARD-FISH) and performed statistical analyses using data for archaeal abundance and geochemical variables. The relative abundance of Thaum - archaeota generally increased with depth, and euryarchaeal abundance was the lowest of all planktonic prokaryotes. Multiple regression analysis showed that the thaumarchaeal relative abundance was negatively correlated with ammonium and dissolved oxygen concentrations and chlorophyll fluorescence. Canonical correspondence analysis showed that archaeal distributions differed with oceanographic water masses; in particular, Thaumarchaeota were abundant from the halocline layer to deep water, where salinity was higher and most nutrients were depleted. However, at several stations on the East Siberian Sea side of the study area and along the North- wind Ridge, Thaumarchaeota and Bacteria were proportionally very abundant at the bottom in association with higher nutrient conditions.
    [Show full text]
  • Oceans of Archaea Abundant Oceanic Crenarchaeota Appear to Derive from Thermophilic Ancestors That Invaded Low-Temperature Marine Environments
    Oceans of Archaea Abundant oceanic Crenarchaeota appear to derive from thermophilic ancestors that invaded low-temperature marine environments Edward F. DeLong arth’s microbiota is remarkably per- karyotes), Archaea, and Bacteria. Although al- vasive, thriving at extremely high ternative taxonomic schemes have been recently temperature, low and high pH, high proposed, whole-genome and other analyses E salinity, and low water availability. tend to support Woese’s three-domain concept. One lineage of microbial life in par- Well-known and cultivated archaea generally ticular, the Archaea, is especially adept at ex- fall into several major phenotypic groupings: ploiting environmental extremes. Despite their these include extreme halophiles, methanogens, success in these challenging habitats, the Ar- and extreme thermophiles and thermoacido- chaea may now also be viewed as a philes. Early on, extremely halo- cosmopolitan lot. These microbes philic archaea (haloarchaea) were exist in a wide variety of terres- first noticed as bright-red colonies trial, freshwater, and marine habi- Archaea exist in growing on salted fish or hides. tats, sometimes in very high abun- a wide variety For many years, halophilic isolates dance. The oceanic Marine Group of terrestrial, from salterns, salt deposits, and I Crenarchaeota, for example, ri- freshwater, and landlocked seas provided excellent val total bacterial biomass in wa- marine habitats, model systems for studying adap- ters below 100 m. These wide- tations to high salinity. It was only spread Archaea appear to derive sometimes in much later, however, that it was from thermophilic ancestors that very high realized that these salt-loving invaded diverse low-temperature abundance “bacteria” are actually members environments.
    [Show full text]