Predicting Cadmium Safety Thresholds in Soils Based on Cadmium Uptake by Chinese Cabbage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Characteristics of Soil| Sample Answer
General Characteristics of Soil| sample answer Q: ‘Examine the general composition and characteristics of any one soil type that you have studied’ (2007 Q17) Latosol- A tropical zonal soil. 3 aspects will be discussed. 1. Composition: Soil is composed of a number of ingredients/components. These components can vary in portion. All soils form as result of the action of several factors. THese factors combine to influence the many processes at work in soil formation eg. Leaching and weathering. These give soil its own characteristics. Soil is composed of number of ingredients and constituents. The components of soil are mixed in different quantities to create different soil types. They are made up of mineral matter, air, water, humus, living organisms. However, climate is the single most important factor in determining what a soil will be like as climate influences vegetation, the rate of weathering and soil, forming processing in an area. The majority of soil is composed of mineral matter. Mineral matter are rock particles from the bedrock and weathered rock. The soil type varies depending on mineral matter. Unconsolidated material eg boulder clay will help form soil more rapidly than solid bedrock as it is partly weathered. Soil is also composed of organic matter. Organic matter includes decaying plants and animals which bacteria and fungi breakdown. Humus is a dark brown jelly-like substance formed from organic matter. Living organisms are also included in ‘organic matter’, earthworms, beetles, fungi, bacteria; they digest organic matter to humus and also mix and create soil. Water is another important component of soil. -
Artificial Chinampas Soils of Mexico City
!"#$%&$'()Chinampas)*+$(,)+-) ./0$&+)1$#23)#4/$")5"+6/"#$/,) '78)*'($7$9'#$+7):'9'"8, Suelos artificiales de chinampas de la Ciudad de México: propiedades y riesgos de salinización Solos artificiais da cidade do México - Chinampas: propriedades e riscos de salinização AUTHORS Received: 24.03.2011 Revised: 02.06.2011 Accepted: 24.06.2011 1 Ramos Bello, R. ABSTRACT García Calderón, 1 N.E. !e chinampas agriculture is a traditional land use practice in the Valley of Mexico since Pre-Hispa- nic time. !e chinampas soils were constructed by excavation of lake sediments that resulted in the Ortega Escobar, 2 H.M. creation of a system of islands separated by channels. !e agricultural productivity of these artificial soils was high; also the land use practices included forestry, fish breeding and hunting. Nowadays, 3@ Krasilnikov, P. the chinampas soils are affected by excessive salinity. We studied 10 representative soil profiles in the pavel.krasilnikov@ gmail.com chinampas zone of Mexico City in order to characterize their properties and origin, to provide their classification, and to evaluate soil salinization, vertical distribution of the salts and their chemical composition. !e soils are characterized by a layered structure, uniform dark grey colour, irregular vertical distribution of organic carbon and clay, and high percentage of carbon. Some soils show an @ Corresponding Author increase in organic matter with depth, and other profiles have maximum organic matter content in the surficial layers and in the subsoil. !e dynamics of sedimentation resulted in the decrease in 1 Facultad de Ciencias, organic matter in the upper layers of lacustrine sediments, because of recent increase in erosion rate UNAM, México. -
A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible Through Initial and Repeated Biochar Application
agronomy Article A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application Ján Horák 1,* , Tatijana Kotuš 1, Lucia Toková 1, Elena Aydın 1 , Dušan Igaz 1 and Vladimír Šimanský 2 1 Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] (T.K.); [email protected] (L.T.); [email protected] (E.A.); [email protected] (D.I.) 2 Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] * Correspondence: [email protected] Abstract: Recent findings of changing climate, water scarcity, soil degradation, and greenhouse gas emissions have brought major challenges to sustainable agriculture worldwide. Biochar application to soil proves to be a suitable solution to these problems. Although the literature presents the pros and cons of biochar application, very little information is available on the impact of repeated application. In this study, we evaluate and discuss the effects of initial and reapplied biochar (both in rates of 0, 10, and 20 t ha−1) combined with N fertilization (at doses of 0, 40, and 80 kg ha−1) on soil properties and N O emission from Haplic Luvisol in the temperate climate zone (Slovakia). Results showed that 2 biochar generally improved the soil properties such as soil pH(KCl) (p ≤ 0.05; from acidic towards Citation: Horák, J.; Kotuš, T.; Toková, moderately acidic), soil organic carbon (p ≤ 0.05; an increase from 4% to over 100%), soil water L.; Aydın, E.; Igaz, D.; Šimanský, V. -
A Review of Four Soil Amendments
Die Bodenkultur: Journal of Land Management, Food and Environment Volume 69, Issue 3, 141–153, 2018. 10.2478/boku-2018-0013 ISSN: 0006-5471 online, © De Gruyter, www.degruyter.com/view/j/boku Research Article Sustainable intensification of agricultural production: a review of four soil amendments Nachhaltige Intensivierung der landwirtschaftlichen Produktion: ein Überblick vier verschiedener Bodenzusätze Katharina Maria Keiblinger1,* Rosana Maria Kral2 1 University of Natural Resources and Life Sciences Vienna, Austria, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria 2 University of Natural Resources and Life Sciences Vienna, Austria, Centre for Development Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria * Corresponding author: [email protected] Received: 22 June 2018, received in revised form: 10 September 2018, accepted: 21 September 2018 Summary Dwindling natural resources, growing population pressure, climate change, and degraded soils threaten agricultural production. In order to feed the growing world population, we have to develop strategies to sustainably intensify current agricultural production while reducing the adverse effects of agriculture. Currently, a number of amendments have come into focus for improving structure and fertility of soils. Zeolites, biochar (BC), lime, and nitrification inhibitors (NIs) are reviewed for their properties. Zeolites and BC share many characteristics, such as a high cation exchange capacity (CEC), high specific surface area, and high porosity. Lime, on the other hand, works above all through its buffering capacity and can improve aggregate stability. Although the latter amend- ments change soil physicochemical characteristics, NIs do not act on soil properties but constrain a chemical/enzymatic reaction directly. These amendments are potential strategies to mitigate ongoing soil degradation and to secure soil fertility, under the global challenges. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Effects of Afforestation on Soil Structure Formation in Two Climatic Regions Of
JOURNAL OF FOREST SCIENCE, 61, 2015 (5): 225–234 doi: 10.17221/6/2015-JFS Eff ects of aff orestation on soil structure formation in two climatic regions of the Czech Republic V. Podrázský1, O. Holubík2, J. Vopravil2, T. Khel2, W.K. Moser3, H. Prknová1 1Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic 2Research Institute for Soil and Water Conservation, Department of Soil Science and Soil Conservation, Prague-Zbraslav, Czech Republic 3U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, USA ABSTRACT: The aim of this study was to determine the effect of agricultural land afforestation on soil characteristics. Two sites in two regions of the Czech Republic were evaluated, at lower as well as higher submountain elevations: in the regions of the Orlické hory Mts. and Kostelec nad Černými lesy, afforested, arable and pasture lands were com- pared for basic chemical and physical characteristics. It was determined: pH, CEC, exchangeable nutrients, SOC, bulk density, volume density, porosity (differentiated by pore size), water conductivity and soil aggregate stability. This study demonstrated the important influence of previous land use upon soil characteristics. The characteristics of the arable horizon can persist for many years; in forests, the mineral horizons (15–30 cm) can persist within 15–30 years after afforestation. Afforestation, which caused an increase in soil porosity by decreasing reduced bulk density and increasing capillary and gravitational pores (increasing the water-holding capacity and soil air capacity), is important for maintaining the soil stability. The positive effect on infiltration and retention capacity resulted not only from the presence of a forest overstorey, but also from the presence of permanent grass cover of pasture land. -
Ph, SOIL ACIDITY, and PLANT GROWTH 67 Numbers, the Danish Biochemist S
pH, SOIL ACIDITY, AND PLANT GROWTH 67 numbers, the Danish biochemist S. P. L. Sorenson devised a system called pH for expressing the acidity or alka- pH, Soil Acidity, linity of solutions. The pH scale goes from o to 14. At pH 7, the midpoint of the scale, there and Plant Growth are equal numbers of hydrogen and hydroxyl ions, and the solution is neu- W. H. Allaway tral. pH values below 7 indicate an acid solution, where there are more hydro- When crop plants do not grow gen ions than hydroxyl ions, with the well, one of the first questions acidity (or hydrogen ion concentra- tion) increasing as the pH values get the soil scientist usually asks smaller. is, ''What is the pH of the soil?'' pH values above 7 denote alkaline solutions, with the concentration of or, 'Is the soil acid, neutral, hydroxyl ions increasing as the pH or alkaline?'' values get larger. The pH scale is based on logarithms The reason for these questions lies in of the concentration of the hydrogen the fact that the pH, or degree of and hydroxyl ions. This means that a acidity of the soil, often is a symptom solution of pH 5 has 10 times the hy- of some disorder in the chemical con- drogen ion concentration of a solution dition of the soil as it relates to plant of pH 6. A solution of pH 4 has 10 nutrition. times more hydrogen ions than one of A measurement of soil acidity or pH 5 and 10 times 10, or 100 times, alkalinity is like a doctor's measure- the hydrogen ion concentration of a ment of a patient's temperature. -
Effects of Biochar Application on Nitrogen Leaching, Ammonia Volatilization and Nitrogen Use Efficiency in Two Distinct Soils
Journal of Soil Science and Plant Nutrition, 2017, 17 (2), 515-528 RESEARCH ARTICLE Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils Zunqi Liu1,2 Tianyi He1,2 Ting Cao1,2 Tiexing Yang1,2 Jun Meng2*, and Wenfu Chen1,2 1Agronomy College, Shenyang Agricultural University, Shenyang, China. 2Liaoning Biochar Engineering & Technology Research Centre, Shenyang, China. *Corresponding author: [email protected] Abstract This study was conducted to determine the effect of biochar application on nitrogen (N) leaching, ammonia (NH3) volatilization, and fertilizer N use efficiency (NUE) in two soils with different properties (loamy and sandy). Ryegrass (Lolium perenne L.) incubation experiments (with 15N-enriched urea applied) and an N loss simulation study were conducted at biochar application rates of 2% and 4%. The results showed that 15N utilization increased by 8.83–9.06% following the addition of biochar to sandy soil during the first season compared with the control. However, this significant effect was not observed in the loamy soil, in which significantly more urea-N was retained in the soil following biochar application. Furthermore, based on the results of the N leaching and NH3 volatilization experiments, 29.19% and 28.65% NO3-N leaching reductions were induced by 2% and 4% biochar amendments in loamy soil, decreasing the total inorganic N that was leached (NH4+-N plus NO3-N) by 26.46% and 26.82%, respectively. However, although the amount of leached NH4+-N decreased in biochar-amended sandy soil, the cumulative NH3 volatilizations were 14.18–20.05% higher than in the control, and 22.55% more NO3--N was leached from biochar-amended sandy soil, resulting in a negative effect on N retention. -
Paleosols Can Promote Root Growth of Recent Vegetation – a Case Study from the Sandy Soil–Sediment Sequence Rakt, the Netherlands
SOIL, 2, 537–549, 2016 www.soil-journal.net/2/537/2016/ doi:10.5194/soil-2-537-2016 SOIL © Author(s) 2016. CC Attribution 3.0 License. Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands Martina I. Gocke1,2, Fabian Kessler1, Jan M. van Mourik3, Boris Jansen4, and Guido L. B. Wiesenberg1 1Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland 2Institute of Crop Science and Resource Conservation, University of Bonn, Nussallee 13, 53115 Bonn, Germany 3IBED-Paleoecology, University of Amsterdam, P.O. Box 94240, Amsterdam 1090 GE, the Netherlands 4IBED-Earth Surface Science, University of Amsterdam, P.O. Box 94240, Amsterdam 1090 GE, the Netherlands Correspondence to: Martina I. Gocke ([email protected]) Received: 3 November 2015 – Published in SOIL Discuss.: 14 December 2015 Accepted: 15 September 2016 – Published: 21 October 2016 Abstract. Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (south- eastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. -
Redalyc.STRUCTURAL QUALITY of POLYACRYLAMIDE-TREATED
Revista Brasileira de Ciência do Solo ISSN: 0100-0683 [email protected] Sociedade Brasileira de Ciência do Solo Brasil Vandeval Maranhão de Melo, Diego; Gomes de Almeida, Brivaldo; Rodrigues de Souza, Edivan; Santos Silva, Laércio; Jacomine, Paulo Klinger Tito STRUCTURAL QUALITY OF POLYACRYLAMIDE-TREATED COHESIVE SOILS IN THE COASTAL TABLELANDS OF PERNAMBUCO Revista Brasileira de Ciência do Solo, vol. 38, núm. 2, 2014, pp. 476-485 Sociedade Brasileira de Ciência do Solo Viçosa, Brasil Available in: http://www.redalyc.org/articulo.oa?id=180231134011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 476 Diego Vandeval Maranhão de Melo et al. STRUCTURAL QUALITY OF POLYACRYLAMIDE-TREATED COHESIVE SOILS IN THE COASTAL TABLELANDS OF PERNAMBUCO(1) Diego Vandeval Maranhão de Melo(2), Brivaldo Gomes de Almeida(3), Edivan Rodrigues de Souza(3), Laércio Santos Silva(4) & Paulo Klinger Tito Jacomine(5) SUMMARY Water-soluble polymers are characterized as effective flocculating agents due to their molecular features. Their application to soils with horizons with structural problems, e.g, a cohesive character, contributes to improvements in the physical quality and thus to the agricultural suitability of such soils. The purpose of this study was to evaluate the structural quality of soils with cohesive horizons of coastal tablelands in the State of Pernambuco treated with polyacrylamide (PAM) as chemical soil conditioner. To this end, three horizons (one cohesive and two non- cohesive) of a Yellow Argisol (Ultisol) were evaluated and to compare cohesive horizons, the horizon of a Yellow Latosol (Oxisol) was selected. -
The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol
TECHNICAL BULLETIN No. 53 JUNE 1963 The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol N. H. MONTEITH and G. DONALD SHERMAN HAWAII AGRICULTURAL EXPERIMENT STATION, UNIVERSITY OF HAWAII The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol N. H. MONTEITH and G. DONALD SHERMAN UNIVERSITY OF HAWAII COLLEGE OF TROPICAL AGRICULTURE HAWAII AGRICULTURAL EXPERIMENT STATION HONOLULU, H AWAII J UNE 1963 T ECIINICAL B ULLETIN No. 53 ACKNOWLEDGMENT The authors gra tcfully acknow ledge the assistance of the staff of th e Experiment Station of the H awaii an Sugar Planters' Association in pro viding greenhouse, photographic, and laboratory facilities, and for advice on sta tistical and analytical methods. Research funds on this proj ect were pro vid ed by the Hawaiian Sugar Planters' Association Experiment Station under a coope rative research agreemcnt with the Department of Agronomy and Soil Science. Funds and materials we re also provided by the Tenn essee Valley Authority, Contract No. TV21132A. THE AUTHORS N. H. MONTEITH was In structor in Agricultur e, University of Hawaii, 1961-1962. DR. G. DONALD SHERMAN, Associate Director of the Hawaii Agricultural Experiment Station, is Senior Soil Scientist at the Hawaii Agricultural Ex periment Station and Senior Professor of Soil Science, University of Hawaii. CONTENTS PAGE INTRODUcrION 5 LITERAT UHE REVIEW 5 Effect of Calcium Carbonate on Phosphorus Availability 5 Effect of Calcium Carbonate on Other Factors 7 Effect of Calcium Silicate on Phosphorus Availability 8 Effect of Calcium Silicate on Other Factors 8 EXPEmMENTAL PROCEDUHES 9 Soils . -
ANTHROSOLS Profound Changes in Soil Properties (From the Greek, Meaning Soil)
JRC Soils Atlas 24/6/05 11:32 am Page 28 The soil of Europe The major soil types of Europe Soil with subsurface accumulation of low activity clay Acid soil with a bleached horizon penetrating a clay ACRISOLS minerals and low base saturation (from the Latin, acris, ALBELUVISOLS accumulation horizon (from the Latin, albus, meaning meaning very acid). white and eluere, meaning to wash out). An Acrisol is a highly weathered soil occurring in warm temperate regions and the wetter parts Albeluvisols have an accumulation of clay in the subsoil with an irregular or broken upper of the tropics and subtropics. Acrisols have poor chemical properties, low levels of plant boundary and deep penetrations or ‘tonguing’ of bleached soil material into the illuviation nutrients, high levels of aluminium and high susceptibility to erosion. These conditions are horizon. The typical “albeluvic tongues” are generally the result of freeze-thaw processes in strong limitations for agricultural use. Acrisols are similar to the Red-Yellow Podzolic soil of periglacial conditions and often show a polygonal network in horizontal cuts. Albeluvisols occur Indonesia), Red and Yellow Earths and are related to several subgroups of Alfisols and Ultisols mainly in the moist and cool temperate regions. Also known as Podzoluvisols (FAO), Ortho- (Soil Taxonomy). podzolic soil (Russia) and several suborders of the Alfisols (Soil Taxonomy). Left: Sheet and rill erosion on Left: Albeluvisols develop Acrisols; mostly under forest vegetation; Below: a natural Acrisol profile Below: Albeluvic tongues are exposed by deep gully erosion; clearly visible penetrating the The map shows the location of bleached illuvial horizon; The areas in Europe where Acrisols map shows the location of are the dominant soil type.