The Arctic Char (Salvelinus Alpinus) “Complex” in North America Revisited
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dolly Varden (Salvelinus Malma) Robert H. Armstrong and Marge
Dolly Varden (Salvelinus malma) Robert H. Armstrong and Marge Hermans The Dolly Varden is one of the most beautiful fishes in Resident Dolly Varden, which live their entire lives Southeastern Alaska (Southeast). This species is also in streams or small lakes and ponds, are small. They highly prized as a sport fish and for delicious eating. seldom grow longer than 10 in. (26 cm). Those that The sea-run Dolly Varden has an overall silvery inhabit larger lakes often grow to 12 in. (30 cm) or appearance with olive-green to brown on its dorsal more, but they still generally weigh less than 1 lb (0.5 surface and numerous red to orange spots on its sides kg). These freshwater fish seldom live more than 8 to (Fig 1). At maturity the lower body of the breeding 10 years. Exceptions are Dolly Varden weighing up to male turns brilliant red. 9 lb (4 kg) in the few Southeast lakes that contain kokanee (small landlocked sockeye salmon [Onchorhynchus nerka]). These larger fish feed on kokanee and tend to live longer, up to 19 years (Armstrong 1991). Sea-run Dolly Varden, fish that spend part of their lives in salt water, usually grow to 15-22 in. (38-56 cm) long and weigh 1-3 lb (0.5-1.4 kg). Occasionally, large fish weighing more than 10 lb (5 kg) are hauled from large mainland rivers such as the Taku River near Juneau. Research has shown that sea-run Dolly Varden are not nearly as abundant in Southeast as most people believe. -
Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the -
Westslope Cutthroat Trout
This file was created by scanning the printed publication. Errors identified by the software have been corrected; Chapter 1 however, some errors may remain. Westslope Cutthroat Trout John D. IVIclntyre and Bruce E. Rieman, USDA Forest Service, Intermountain Research Station, 316 E. iViyrtle Street, Boise, Idaho 83702 Introduction Westslope cutthroat trout begin to mature at age 3 but usually spawn first at age 4 or 5 (table 2). Sexu The westslope cutthroat trout inhabits streams on ally maturing adfluvial fish move into the vicinity of both sides of the Continental Divide. On the east side tributaries in fall and winter where they remain un of the divide, they are distributed mostly in Mon til they begin to migrate upstream in the spring tana but also occur in some headwaters in Wyoming (Liknes 1984). They spawn from March to July at and southern Alberta (Behnke 1992). They are in the water temperatures near 10°C (Roscoe 1974; Liknes Missouri Basin downstream to about 60 km below 1984; Shepard et al. 1984). A population of adult fish Great Falls and in the headwaters of the Judith, Milk, in the St. Joe River, Idaho, included 1.6 females for and Marias rivers. On the west side of the Continen each male (Thurow and Bjornn 1978). Average length tal Divide the subspecies occurs in the upper was 334 mm for females and 366 mm for males. A Kootenai River; the Clark Fork drainage in Montana similar population in Big Creek, Montana, included and Idaho downstream to the falls on the Fend Oreille 4.1 females for each male (Huston et al. -
Triploidy Induction in Arctic Char Salvelinus Alpinus Using Heat Shocking and Pressure Shocking Techniques
Fishery Data Series No. 06-19 Triploidy Induction in Arctic Char Salvelinus alpinus using Heat Shocking and Pressure Shocking Techniques by Diane P. Loopstra and Patricia A. Hansen April 2006 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co. -
Stevens Point Northern Aquaculture Demonstration Facility
University of Wisconsin- Stevens Point Northern Aquaculture Demonstration Facility • Greg Fischer • Facilities Operation Manager New Species for Wisconsin Aquaculture • Arctic Char?? WHY ARCTIC CHAR • Coldwater Species • Rapid growth – 1 kg(2.2 lbs) <17months • High quality flesh • Good market price with limited availability • High culture densities-120kg/m³(1.0lb/gal) • High fillet yield 50% + @market size 1-3 kg (2.2-6.6lbs) Comparsion between Arctic Char, Rainbow Trout, and Brook Trout in Weig ht Over Time from 20 g rams 900 800 700 600 AC -10 500 B K T-06 gms 400 R B T-08 300 200 100 0 0 30 60 90 120 150 180 210 240 270 300 330 360 390 Days of growth Days from 20 gms to 1.0 pd AC -10 R B T- 08 B K T-06 0 50 100 150 200 250 S eries2 Evaluation of photoperiod manipulation on Arctic Char growth, processing attributes, and sexual maturity in a coldwater recirculating system at UWSP-NADF Materials and Methods . The purpose of this study was to evaluate and compare arctic charr production attributes reared under two different photoperiods (24 hr and natural) in an RAS system. Troutlodge Inc. provided Nauyuk Lake (Canada) strain arctic charr eggs. Cultured 17 months from egg to market size (1.0 kg) (2.0 lbs) . Reared 10 months in RAS system . Project was conducted inside main aquatic barn at NADF. Materials and Methods Egg and Fry Culture . Eyed eggs incubated in Heath Stack .Flow thru 8.0°C(48F) degassed & aerated ground water. Fry were transferred to shallow (406 mm x 1219 mm) flow-thru fiberglass tank inserts. -
Holarctic Phylogeography of Arctic Charr (Salvelinus Alpinus L.) Inferred from Mitochondrial Dna Sequences
Evolution, 55(3), 2001, pp. 573±586 HOLARCTIC PHYLOGEOGRAPHY OF ARCTIC CHARR (SALVELINUS ALPINUS L.) INFERRED FROM MITOCHONDRIAL DNA SEQUENCES PATRICK C. BRUNNER,1,2,5 MARLIS R. DOUGLAS,1 ALEXANDER OSINOV,3 CHRIS C. WILSON,4 AND LOUIS BERNATCHEZ2 1Zoologisches Museum, UniversitaÈt ZuÈrich, Winterthurerstrasse 190, CH-8057 ZuÈrich, Switzerland 2DeÂpartement de biologie, GIROQ, Universite Laval, Saint-Foy QueÂbec G1K 7P4, Canada 3Department of Ichthyology, Moscow State University, Moscow, 119899, Russia 4Ontario Ministry of Natural Resources, Aquatic Ecosystems Science Section, Trent University, Peterborough Ontario, K9J 8N8, Canada Abstract. This study evaluated mitochondrial DNA (mtDNA) sequence variation in a 552-bp fragment of the control region of Arctic charr (Salvelinus alpinus) by analyzing 159 individuals from 83 populations throughout the entire range of the complex. A total of 89 (16.1%) nucleotide positions were polymorphic, and these de®ned 63 haplotypes. Phylogenetic analyses supported the monophyly of the complex and assigned the observed haplotypes to ®ve geographic regions that may be associated with different glacial refugia. Most notably, a formerly de®ned major evolutionary lineage (S. a. erythrinus) ranging from North America across the Arctic archipelago to the Eurasian continent has now been partitioned into the Arctic group and the newly identi®ed Siberian group. The Beringian group, formed entirely by specimens assigned to S. malma (Dolly Varden), encompassed the area formerly assigned to S. a. taranetzi. The latter, due to a unique haplotype, became the basal member of the Arctic group. Overall, the S. alpinus complex re¯ects divergent evolutionary groups coupled with shallow intergroup differentiation, also indicated by an analysis of molecular variance that attributed 73.7% (P , 0.001) of the total genetic variance among groups. -
Reindeer Grazing Permits on the Seward Peninsula
U.S. Department of the Interior Bureau of Land Management Anchorage Field Office 4700 BLM Road Anchorage, Alaska 99507 http://www.blm.gov/ak/st/en/fo/ado.html Environmental Assessment: DOI-BLM-AK-010-2009-0007-EA Reindeer Grazing Permits on the Seward Peninsula Applicant: Clark Davis Case File No.: F-035186 Applicant: Fred Goodhope Case File No.: F-030183 Applicant: Thomas Gray Case File No.: FF-024210 Applicant: Nathan Hadley Case File No.: FF-085605 Applicant: Merlin Henry Case File No.: F-030387 Applicant: Harry Karmun Case File No. : F-030432 Applicant: Julia Lee Case File No.: F-030165 Applicant: Roger Menadelook Case File No.: FF-085288 Applicant: James Noyakuk Case File No.: FF-019442 Applicant: Leonard Olanna Case File No.: FF-011729 Applicant: Faye Ongtowasruk Case File No.: FF-000898 Applicant: Palmer Sagoonick Case File No.: FF-000839 Applicant: Douglas Sheldon Case File No.: FF-085604 Applicant: John A. Walker Case File No.: FF-087313 Applicant: Clifford Weyiouanna Case File No.: FF-011516 Location: Bureau of Land Management lands on the Seward Peninsula Prepared By: BLM, Anchorage Field Office, Resources Branch December 2008 DECISION RECORD and FINDING OF NO SIGNIFICANT IMPACT I. Decision: It is my decision to issue ten-year grazing permits on Bureau of Land Management lands to reindeer herders on the Seward and Baldwin peninsulas, Alaska. The permits shall be subject to the terms and conditions set forth in Alternative B of the attached Reindeer Grazing Programmatic Environmental Assessment. II. Rationale for the Decision: The Reindeer Industry Act of 1937, 500 Stat. 900, authorizes the Secretary’s regulation of reindeer grazing on Federal public lands on the peninsulas. -
Reindeer and Caribou: Herds and Livelihoods in Transition
The Greenland experience 6 MAGAZINE Wek'eezhii herd management 11 No. 1 Windmill power: green energy or 2011 The CirCle trampling traditional lifestyles? 19 reindeer and Caribou: herds and livelihoods in TransiTion PUBLISHED BY THE WWF GLoBaL aRCTIC PRoGRaMME The Circle 1.2011 Contents EDITORIAL MOnte HummeL Caribou: The Experience 3 In BRIEF 4 Jeff Kerby Global warming: Timing is everything 6 AnnE Gunn Fighting inertia to conserve caribou herds 8 Jody SnortlanD, Karin ClarK Balancing Expectations: The Wek’èezhìi example of herd management 11 Leonid Baskin, Tobias Kuemmerle, Volker C. Radeloff Protecting wild reindeer in Siberia 13 BRuce Forbes A lesson in global warming and gas exploitation 15 WIndmills V.S Sámi comMunities – Green colOnialism? 19–22 Lars-Anders Baer Windmill colonialism: A threat to Arctic Indigenous people 20 JOnas Lundmark Wind power – Europe’s shining star? 21 Niklas Labba Muohta with the threat of climate change 22 Philip Burgess Long distance learning 25 THE PICTuRE 28 What (herders) find harder to handle, and have little leverage to influence, is the progressive loss of traditional territories and resources they need to survive – grazing lands, campsites, sacred sites, fresh- water fish – to rapidly advancing gas development. “ Dr. Bruce Forbes, article page 15 ranGifers Photo: Jeff Kerby Photo: Jeff The Circle is published quarterly by Publisher: Editor in Chief: Clive Tesar, [email protected] CoVER: the WWF Global arctic Programme. WWF Global arctic Programme, Editor: Becky Rynor, [email protected] a young Nenets boy leads his Reproduction and quotation with appro- 30 Metcalfe Street reindeer team across the new priate credit are encouraged. -
Arctic Biodiversity Synthesis
ACSAO-SE04 Stockholm Doc 3.5b Mar 2013 ABA Synthesis Final draft ABA Synthesis – February 20th 2013 Chapter 1 Arctic Biodiversity Synthesis Authors Hans Meltofte, Tom Barry, Dominique Berteaux, Helga Bü ltmann, Jørgen S. Christiansen, Joseph A. Cook, Anders Dahlberg, Fred J.A. Daniëls, Dorothee Ehrich, Finnur Friðriksson, Barbara Ganter, Anthony J. Gaston, Lynn Gillespie, Lenore Grenoble, Eric P. Hoberg, Ian D. Hodkinson, Henry P. Huntington, Rolf A. Ims, Alf B. Josefson, Susan J. Kutz, Sergius L. Kuzmin, Kristin L. Laidre, Dennis R. Lassuy, Patrick N. Lewis, Connie Lovejoy, Christine Michel, Vadim Mokievsky, Tero Mustonen, David C. Payer, Michel Poulin, Donald Reid, James D. Reist, David F. Tessler and Frederick J. Wrona ”Nowadays all of the tundra is on the move now. Many forest animals are coming to tundra now. Moose is moving towards the tundra proper nowadays” (Alexey Nikolayevich Kemlil, a Chukchi reindeer herder from Turvaurgin in northeastern Sakha-Yakutia, Siberia; T. Mustonen in litt.). “I too, have noticed changes to the climate in our area. It has progressed with frightening speed especially the last few years. In Iqaluktutiaq, the landscape has changed. The land is now a stranger, it seems, based on our accumulated knowledge. The seasons have shifted, the ice is thinner and weaker, and the streams, creeks and rivers have changed their characteristics” (Analok, Cambridge Bay, Victoria Island, Nunavut; Elders Conference on Climate Change 2001). Photo caption Climate change is already causing earlier snow melt, which initially may benefit many Arctic organisms. But in the longer term it will make it possible for more competitive southern species to ‘take over’ what are currently Arctic habitats. -
The Charr Problem Revisited: Exceptional Phenotypic Plasticity Promotes Ecological Speciation in Postglacial Lakes
49 Article The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes Anders Klemetsen University of Tromsø, Breivika, N-9037 Tromsø, Norway. Email: [email protected] Received 27 October 2009; accepted 26 January 2010; published 24 May 2010 Abstract The salmonid arctic charr Salvelinus alpinus (L.) is one of the most widespread fishes in the world and is found farther north than any other freshwater or diadromous fish, but also in cool water farther south. It shows a strong phenotypic, ecological, and life history diversity throughout its circumpolar range. One particular side of this diversity is the frequent occurrence of two or more distinct charr morphs in the same lake. This polymorphism has been termed ‘the charr problem’. Similar cases are found in other postglacial fishes, but not with the extent and diversity as with the arctic charr. This review first treats the classical case, pioneered in an advanced way by Winifred Frost, of autumn and winter spawning charr in Windermere, England, and three other cases that have received much research interest in recent years: Thingvallavatn, Iceland; Loch Rannoch, Scotland; and Fjellfrøsvatn, Norway. Then a special kind of sympatry with one morph living permanently in the profundal zone, known from a few lakes in Europe, Russia and Canada and unique for arctic charr among postglacial fishes, is reviewed. Among them is a recently discovered charr at 450 m depth in Tinnsjøen, Norway, one of the few very deep lakes in the world. With examples, the concluding discussion focuses on the variation of arctic charr polymorphisms which extends from early stages of ecological segregation to cases of reproductive isolation and speciation; and on models to explain the charr problem. -
COSEWIC Assessment and Status Report on the Bull Trout Salvelinus Confluentus in Canada
COSEWIC Assessment and Status Report on the Bull Trout Salvelinus confluentus South Coast British Columbia populations Western Arctic populations Upper Yukon Watershed populations Saskatchewan - Nelson Rivers populations Pacific populations in Canada South Coast British Columbia populations - SPECIAL CONCERN Western Arctic populations - SPECIAL CONCERN Upper Yukon Watershed populations - DATA DEFICIENT Saskatchewan - Nelson Rivers populations - THREATENED Pacific populations - NOT AT RISK 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Bull Trout Salvelinus confluentus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. iv + 103 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Production note: COSEWIC would like to acknowledge Jennifer Gow for writing the status report on the Bull Trout, Salvelinus confluentus, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Dr. John Post, Co-chair of the COSEWIC Freshwater Fishes Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur L’omble à tête plate (Salvelinus confluentus) au Canada. Cover illustration/photo: Bull Trout — Picture courtesy of J.D. McPhail and D.L. McPhail. Her Majesty the Queen in Right of Canada, 2013. Catalogue No. CW69-14/659-2013E-PDF ISBN 978-1-100-22290-5 Recycled paper COSEWIC Assessment Summary Assessment Summary – November 2012 Common name Bull Trout - South Coast British Columbia populations Scientific name Salvelinus confluentus Status Special Concern Reason for designation This freshwater fish exists in five large river systems in this area. -
Status of Brown Trout (Salmo Trutta Fario L.) in Garhwal Himalaya with a Note on It Morphometric Characteristics
Environment Conservation Journal 12(3) 47-52, 2011 (ISSN 0972-3099) Abstracted and Indexed Status of brown trout (Salmo trutta fario L.) in Garhwal Himalaya with a note on it morphometric characteristics M.S. Rawat Babita Bantwanl, Dhyal Singhl and O.P. Gusain2 Received: 10.09.2011 Accepted: 15.11.2011 Abstract The history of introduction of brown trout in Garhwal Himalaya is 100 years. However, the scientific information on brown trout is grossly lacking. The present study is a part of investigation on various aspects of brown trout inhabiting the River Asiganga in Uttarkashi district of Uttarakhand. The status of brown trout was ascertained in River Asiganga and other reports from elsewhere in the region. The morphometric study was based on 253 fish specimens collected from River Asiganga. In addition to the 12 body measurements of the fish, red/orange and brown spots on body were also studied. Keywords: River Asiganga, brown trout, body spots, teeth Introduction Brown trout (Salmo trutta fario L.) belonging toand Sehgal, 1992). As such, various aspects of family salmonidae are indigenous to Europe, Northbrown trout have been extensively dealt with in America, Africa, Australia, New Zealand, Papuadifferent parts of the world by Frost (1939), Ball New Guinea (Moyle 2002), while, native western (1961),Michael(1970),Elliott(1972,1976), Asian countries are Armenia, Afghanistan and Edwards et al. (1979), Lobon-Cervia et al. (1986), Turkey. In Asia, the fish has been introduced inBelaud (2002), Alp et al. (2003, 2005), Arslan et India, Sri Lanka and Nepal. With large variabilityal. (2004), Maric et al. (2004), Oscoz et al.