The Charr Problem Revisited: Exceptional Phenotypic Plasticity Promotes Ecological Speciation in Postglacial Lakes

Total Page:16

File Type:pdf, Size:1020Kb

The Charr Problem Revisited: Exceptional Phenotypic Plasticity Promotes Ecological Speciation in Postglacial Lakes 49 Article The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes Anders Klemetsen University of Tromsø, Breivika, N-9037 Tromsø, Norway. Email: [email protected] Received 27 October 2009; accepted 26 January 2010; published 24 May 2010 Abstract The salmonid arctic charr Salvelinus alpinus (L.) is one of the most widespread fishes in the world and is found farther north than any other freshwater or diadromous fish, but also in cool water farther south. It shows a strong phenotypic, ecological, and life history diversity throughout its circumpolar range. One particular side of this diversity is the frequent occurrence of two or more distinct charr morphs in the same lake. This polymorphism has been termed ‘the charr problem’. Similar cases are found in other postglacial fishes, but not with the extent and diversity as with the arctic charr. This review first treats the classical case, pioneered in an advanced way by Winifred Frost, of autumn and winter spawning charr in Windermere, England, and three other cases that have received much research interest in recent years: Thingvallavatn, Iceland; Loch Rannoch, Scotland; and Fjellfrøsvatn, Norway. Then a special kind of sympatry with one morph living permanently in the profundal zone, known from a few lakes in Europe, Russia and Canada and unique for arctic charr among postglacial fishes, is reviewed. Among them is a recently discovered charr at 450 m depth in Tinnsjøen, Norway, one of the few very deep lakes in the world. With examples, the concluding discussion focuses on the variation of arctic charr polymorphisms which extends from early stages of ecological segregation to cases of reproductive isolation and speciation; and on models to explain the charr problem. The exceptional diversity of arctic charr provides a unique potential for further progress in studies on ecologically driven evolution within the frames of modern theory of developmental plasticity, adaptive radiation and adaptive speciation. Keywords: Arctic charr; Salvelinus alpinus; polymorphism; behaviour; morphology; life history; profundal morphs; niche expansion; reproductive isolation; sympatric speciation; adaptive radiation; natural selection. DOI: 10.1608/FRJ-3.1.3 Freshwater Reviews (2010) 3, pp. 49-74 © Freshwater Biological Association 2010 50 Klemetsen, A. Introduction Oncorhynchus, the salmons and trouts of the Atlantic and Pacific regions, respectively. Salvelinus became a In 1758, Linné described the arctic charr as Salmo alpinus, taxonomic nightmare in the 20th century. A large number the trout of the mountains (Linnaeus, 1758). The scientific of species were described in Europe, Asia and America and vernacular names therefore refer charr to two different (Behnke, 1980; Savvaitova, 1980). Very many of these were landscapes, the mountains and the Arctic, and both are subsequently regarded invalid (see, for instance, Adams important for this species. The charr is adapted to cold and & Maitland (2007) for UK and Ireland). Today, five major cool water and is widely distributed in arctic and subarctic species and several species with restricted distributions regions around the world (Fig. 1), at altitude in mountains are recognised by most authors (Behnke, 1980). But on the farther south, but also in temperate lowland lakes, usually other hand and no doubt controversial, Kottelat & Freyhof living below the thermocline in the summer (Johnson, (2007) again set up a host of Salvelinus species in their new 1980). It is found farther north than any other freshwater book on European freshwater fishes. The systematics and or diadromous fish, even in lakes where the ice does not taxonomy of the genus are still problematic, but considerable break every year (Hammar, 1991; Reist et al., 1995). It is progress has been achieved by modern genetic methods. also found higher up and deeper down than any other A good example is the study by Oleinik et al. (2007) on fish in Europe, to more than 2000 m elevation (maximum the phylogeny of east Asian charr. They suggest that above 2800 m) in many lakes in the Alps and the Pyrenees north-eastern Asia was a centre of speciation in Salvelinus, (Balon & Penzak, 1980; Pechlaner, 1984; Machino, 1987, driven by periodic climate changes during the last 4 Myr. 1991), and at greater than 400 m depth in Norway (Søreide Salvelinus alpinus (L.) is particularly difficult. It et al., 2006). has a bewildering phenotypic and ecological diversity Later, Richardson (1836) established a new genus, throughout its circumpolar range, and shows extreme Salvelinus, for the charrs. The circumpolar Salvelinus life history diversity at the species, population and even became a major salmonid genus along with Salmo and individual (ontogenetic) levels. The diversity is so large that it can be asked if the arctic charr is the most variable of all vertebrates; in range, in size at maturity, in phenotype (colour, form), in behaviour, in ecology, and in life history. In this essay, I will discuss several aspects of this diversity with focus on what has long been known as ‘the charr problem’: the puzzling phenomenon that arctic charr sometimes occur as two or more distinct morphs in the same lake. Arctic charr polymorphisms were recently extensively reviewed by Jonsson & Jonsson (2001) and also treated by Klemetsen et al. (2003). Here, I will not repeat these contributions but instead, after defining the charr problem, treat more extensively the histories of one classical case, three more recent and intensively studied cases, and some intriguing cases where one morph lives permanently in deep water. Together, these cases add significantly not only to our understanding of the nature of the charr problem but also to the general discussion on Fig. 1. The Arctic charr has a wide circumpolar distribution and ecologically driven speciation. By this treatment, much of is the northernmost freshwater and diadromous fish of the world. Red colour indicates anadromy. Reprinted from Svenning & Klemetsen (2001), with permission. © Freshwater Biological Association 2010 DOI: 10.1608/FRJ-3.1.3 Phenotypic plasticity leads to speciation in Arctic charr 51 the literature that has appeared after the above reviews will problem should be restricted to the sympatric dimension, also be covered, especially in the concluding discussion. with focus on polymorphisms in postglacial time and specific lakes. Both concern the diversity of arctic charr, The problem but with different scales in time and space. The research fields around these two terms are not the same but they In his comprehensive and now classic review on the do overlap because the evolution of sympatric forms biology of arctic charr, Johnson (1980) presented the may bear upon the systematics and, ultimately, also the first historical overview of the charr problem as it then taxonomy of charr. This review is on the charr problem, but appeared in the literature. He did not use the term directly, because of the overlap with the Salvelinus complex, it will but wrote that the occurrence in the same lake of more than unavoidably also refer to literature on this phenomenon. one form has been observed throughout the geographical One of the first descriptions of different forms of range of arctic charr to an ‘extent and frequency that seems charr in the same lake is probably by Sir Daniel Fleming to be unique to this species’ (Johnson, 1980, p. 26). In who in a letter in 1665 noted that a fish known as German, the term has long been used for cases of clearly ‘case’ in Windermere, England’s largest natural lake, distinguishable, sympatric charr types in some pre-alpine is much like the charr, but spawns at a different time lakes (das ‘Saiblingsproblem’; see Dörfel, 1974). Sympatric (Frost, 1965). About a hundred years later, Pennant forms are known in other northern fishes Coregonus( , (1769, cited by Frost, 1965) remarked that the different Gasterosteus, Osmerus, Salmo), but not as widespread and seasons of spawning of charr in Windermere ‘puzzles with such a diversity as in Salvelinus. It is, perhaps, because us greatly’. So, the charr problem is an old problem. the polymorphisms are so frequent and, in some respects, spectacular and unique, that a special term is coined for Winifred E. Frost and the charr but not for other postglacial fishes. Nordeng (1983) Windermere charr referred to the char (sic) problem as the phenomenon that arctic charr frequently occur in two or three coexisting Winifred Frost (Fig. 2) was a pioneer in post-war charr forms of different sizes. I prefer the description as given research. She found that Windermere had separate (but not termed) by Johnson (1980) because other studies populations of charr that spawned at different times and have shown that there may be more than three sympatric places. She called them autumn spawners and spring morphs and because morphs may not necessarily be of spawners, after their spawning time. Her work on different sizes. Windermere (Frost, 1951, 1963, 1965) was the first clear The charr problem is sometimes confused with documentation of reproductive isolation between sympatric another term: the ‘arctic charr (or Salvelinus alpinus) charr populations. She discussed the results in relation to complex’. Behnke (1980) used it to address the speciation in her 1965 paper (even saying so in the title), taxonomic diversity of the subgenus Salvelinus, i.e. and speculated on a possible mode of sympatric speciation S. alpinus, Dolly Varden charr S. malma (Walbaum) (without using the term) in the general discussion of that and other related species. Later, he restricted the paper. This was a bold discussion at a time when Mayr’s term to all charr forms that are more closely related to allopatric speciation mode ruled in evolutionary theory. Scandinavian S. alpinus than to S. malma (Behnke, 1984). At the limnological congress in Leningrad in 1971, I For clarity, the two terms should be kept apart, as above. had the good fortune to meet Winifred Frost.
Recommended publications
  • The Arctic Char (Salvelinus Alpinus) “Complex” in North America Revisited
    The Arctic char (Salvelinus alpinus) “complex” in North America revisited Eric B. Taylor Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Hydrobiologia DOI 10.1007/s10750-015-2613-6 1 23 Author's personal copy Hydrobiologia DOI 10.1007/s10750-015-2613-6 CHARR II Review Paper The Arctic char (Salvelinus alpinus) ‘‘complex’’ in North America revisited Eric B. Taylor Received: 1 July 2015 / Revised: 16 November 2015 / Accepted: 5 December 2015 Ó Springer International Publishing Switzerland 2015 Abstract The Arctic char (Salvelinus alpinus) law. This research has significantly revised what species ‘‘complex’’ has fascinated biologists for constitutes the S. alpinus species ‘‘complex’’, provided decades particularly with respect to how many species insights into the ecology and genetics of co-existence, there are and their geographic distributions. I review and promoted conservation assessment that better recent research on the species complex, focussing on represents biodiversity within Salvelinus. A geograph- biodiversity within northwestern North America, ically and genetically comprehensive analysis of which indicates (i) what was once considered a single relationships among putative taxa of Pan-Pacific taxon consists of three taxa: S. alpinus (Arctic char), S. Salvelinus is still required to better quantify the malma (Dolly Varden), and S. confluentus (bull trout), number of taxa and their origins. (ii) morphological and genetic data indicate that S. alpinus and S. malma, and S. malma and S. confluentus Keywords Dolly Varden Á Arctic char Á Bull trout Á exist as distinct biological species in sympatry, (iii) Geographic distribution Á Taxonomy Á Conservation sympatric forms of S. alpinus exist in Alaska as in other areas of the Holarctic, (iv) Dolly Varden comprises two well-differentiated subspecies, S.
    [Show full text]
  • Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
    QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the
    [Show full text]
  • Вопросы Ихтиологии Том 59 № 4 2019 Июль–Август Основан В 1953 Г
    Российская академия наук ВОПРОСЫ ИХТИОЛОГИИ Том 59 № 4 2019 Июль–Август Основан в 1953 г. Выходит 6 раз в год ISSN: 0042-8752 Журнал издается под руководством Отделения биологических наук РАН Редакционная коллегия: Главный редактор Д.С. Павлов А.М. Орлов (ответственный секретарь), С.А. Евсеенко (заместитель главного редактора), М.В. Мина (заместитель главного редактора), М.И. Шатуновский (заместитель главного редактора), О.Н. Маслова (научный редактор) Редакционный совет: П.-А. Амундсен (Норвегия), Д.А. Астахов, А.В. Балушкин, А.Е. Бобырев, Й. Вайценбок (Австрия), Ю.Ю. Дгебуадзе, А.В. Долгов, М. Докер (Канада), А.О. Касумян, Б. Коллетт (США), А.Н. Котляр, К.В. Кузищин, Е.В. Микодина, В.Н. Михеев, П. Моллер (США), А.Д. Мочек, Д.А. Павлов, Ю.С. Решетников, А.М. Токранов, В.П. Шунтов Зав. редакцией М.С. Чечёта E-mail: [email protected] Адрес редакции: 119071 Москва, Ленинский проспект, д. 33 Телефон: 495-958-12-60 Журнал “Вопросы ихтиологии” реферируется в Реферативном журнале ВИНИТИ, Russian Science Citation Index (Clarivate Analytics) Москва ООО «ИКЦ «АКАДЕМКНИГА» Оригинал-макет подготовлен ООО «ИКЦ «АКАДЕМКНИГА» © Российская академия наук, 2019 © Редколлегия журнала “Вопросы ихтиологии” (составитель), 2019 1 Подписано к печати 28.12.2018 г. Дата выхода в свет 15.03.2019 г. Формат 60 × 88 /8 Усл. печ. л. 15.5 Тираж 24 экз. Зак.2047 Бесплатно Учредитель: Российская академия наук Свидетельство о регистрации средства массовой информации ПИ № ФС77-66712 от 28 июля 2016 г., выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) Издатель: Российская академия наук, 119991 Москва, Ленинский пр., 14 Исполнитель по госконтракту № 4У-ЭА-197-18 ООО «ИКЦ «АКАДЕМКНИГА», 109028 Москва, Подкопаевский пер., 5, мезонин 1, к.
    [Show full text]
  • Holarctic Phylogeography of Arctic Charr (Salvelinus Alpinus L.) Inferred from Mitochondrial Dna Sequences
    Evolution, 55(3), 2001, pp. 573±586 HOLARCTIC PHYLOGEOGRAPHY OF ARCTIC CHARR (SALVELINUS ALPINUS L.) INFERRED FROM MITOCHONDRIAL DNA SEQUENCES PATRICK C. BRUNNER,1,2,5 MARLIS R. DOUGLAS,1 ALEXANDER OSINOV,3 CHRIS C. WILSON,4 AND LOUIS BERNATCHEZ2 1Zoologisches Museum, UniversitaÈt ZuÈrich, Winterthurerstrasse 190, CH-8057 ZuÈrich, Switzerland 2DeÂpartement de biologie, GIROQ, Universite Laval, Saint-Foy QueÂbec G1K 7P4, Canada 3Department of Ichthyology, Moscow State University, Moscow, 119899, Russia 4Ontario Ministry of Natural Resources, Aquatic Ecosystems Science Section, Trent University, Peterborough Ontario, K9J 8N8, Canada Abstract. This study evaluated mitochondrial DNA (mtDNA) sequence variation in a 552-bp fragment of the control region of Arctic charr (Salvelinus alpinus) by analyzing 159 individuals from 83 populations throughout the entire range of the complex. A total of 89 (16.1%) nucleotide positions were polymorphic, and these de®ned 63 haplotypes. Phylogenetic analyses supported the monophyly of the complex and assigned the observed haplotypes to ®ve geographic regions that may be associated with different glacial refugia. Most notably, a formerly de®ned major evolutionary lineage (S. a. erythrinus) ranging from North America across the Arctic archipelago to the Eurasian continent has now been partitioned into the Arctic group and the newly identi®ed Siberian group. The Beringian group, formed entirely by specimens assigned to S. malma (Dolly Varden), encompassed the area formerly assigned to S. a. taranetzi. The latter, due to a unique haplotype, became the basal member of the Arctic group. Overall, the S. alpinus complex re¯ects divergent evolutionary groups coupled with shallow intergroup differentiation, also indicated by an analysis of molecular variance that attributed 73.7% (P , 0.001) of the total genetic variance among groups.
    [Show full text]
  • Charr (Sal Velinus Alpinus L.) from Three Cumbrian Lakes
    Heredity (1984), 53 (2), 249—257 1984. The Genetical Society of Great Britain BIOCHEMICALPOLYMORPHISM IN CHARR (SAL VELINUS ALPINUS L.) FROM THREE CUMBRIAN LAKES A. R. CHILD Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research, Fisheries Laboratory, Pake field Road, Lowestoft, Suffolk NR33 OHT, U.K. Received25.i.84 SUMMARY Blood sera from four populations of charr (Salvelinus alpinus L.) inhabiting three lakes in Cumbria were analysed for genetic polymorphisms. Evidence was obtained at the esterase locus supporting the genetic isolation of two temporally distinct spawning populations of charr in Windermere. Significant differences at the transferrin and esterase loci between the Coniston population of charr and the populations found in Ennerdale Water and Windermere were thought to be due to genetic drift following severe reduction in the effective population size in Coniston water. 1. INTRODUCTION The Arctic charr (Salvilinus alpinus L.) has a circumpolar distribution in the northern hemisphere. The populations in the British Isles are confined to isolated lakes in Wales, Cumbria, Ireland and Scotland. Charr north of latitude 65°N are anadromous but this behaviour has been lost in southerly populations. This paper describes an investigation of biochemical polymorphism of the isozyme products of two loci, serum transferrin and serum esterase, in charr populations from three Cumbrian lakes—Windermere, Ennerdale Water and Coniston Water (fig. 1). Electrophoretic methods applied to tissue extracts have been employed by several workers in an attempt to clarify the "species complex" in Sal- velinus alpinus and to investigate interrelationships between charr popula- tions (Nyman, 1972; Henricson and Nyman, 1976; Child, 1977; Klemetsen and Grotnes, 1980).
    [Show full text]
  • Arctic Biodiversity Synthesis
    ACSAO-SE04 Stockholm Doc 3.5b Mar 2013 ABA Synthesis Final draft ABA Synthesis – February 20th 2013 Chapter 1 Arctic Biodiversity Synthesis Authors Hans Meltofte, Tom Barry, Dominique Berteaux, Helga Bü ltmann, Jørgen S. Christiansen, Joseph A. Cook, Anders Dahlberg, Fred J.A. Daniëls, Dorothee Ehrich, Finnur Friðriksson, Barbara Ganter, Anthony J. Gaston, Lynn Gillespie, Lenore Grenoble, Eric P. Hoberg, Ian D. Hodkinson, Henry P. Huntington, Rolf A. Ims, Alf B. Josefson, Susan J. Kutz, Sergius L. Kuzmin, Kristin L. Laidre, Dennis R. Lassuy, Patrick N. Lewis, Connie Lovejoy, Christine Michel, Vadim Mokievsky, Tero Mustonen, David C. Payer, Michel Poulin, Donald Reid, James D. Reist, David F. Tessler and Frederick J. Wrona ”Nowadays all of the tundra is on the move now. Many forest animals are coming to tundra now. Moose is moving towards the tundra proper nowadays” (Alexey Nikolayevich Kemlil, a Chukchi reindeer herder from Turvaurgin in northeastern Sakha-Yakutia, Siberia; T. Mustonen in litt.). “I too, have noticed changes to the climate in our area. It has progressed with frightening speed especially the last few years. In Iqaluktutiaq, the landscape has changed. The land is now a stranger, it seems, based on our accumulated knowledge. The seasons have shifted, the ice is thinner and weaker, and the streams, creeks and rivers have changed their characteristics” (Analok, Cambridge Bay, Victoria Island, Nunavut; Elders Conference on Climate Change 2001). Photo caption Climate change is already causing earlier snow melt, which initially may benefit many Arctic organisms. But in the longer term it will make it possible for more competitive southern species to ‘take over’ what are currently Arctic habitats.
    [Show full text]
  • Variation in Salmonid Life Histories: Patterns and Perspectives
    United States Department of Agriculture Variation in Salmonid Life Forest Service Histories: Patterns and Pacific Northwest Research Station Perspectives Research Paper PNW-RP-498 Mary F. Willson February 1997 Author MARY F. WILLSON is a research ecologist, Forestry Sciences Laboratory, 2770 Sherwood Lane, Juneau, AK 98801. Abstract Willson, Mary F. 1997. Variation in salmonid life histories: patterns and perspectives. Res. Pap. PNW-RP-498. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 50 p. Salmonid fishes differ in degree of anadromy, age of maturation, frequency of repro- duction, body size and fecundity, sexual dimorphism, breeding season, morphology, and, to a lesser degree, parental care. Patterns of variation and their possible signif- icance for ecology and evolution and for resource management are the focus of this review. Keywords: Salmon, char, Oncorhynchus, Salmo, Salvelinus, life history, sexual dimor- phism, age of maturation, semelparity, anadromy, phenology, phenotypic variation, parental care, speciation. Summary Salmonid fishes differ in degree of anadromy, age of maturation, frequency of reproduction, body size and fecundity, sexual dimorphism, breeding season, morphology, and to a lesser degree, parental care. The advantages of large body size in reproductive competition probably favored the evolution of ocean foraging, and the advantages of safe breeding sites probably favored freshwater spawning. Both long-distance migrations and reproductive competition may have favored the evolution of semelparity. Reproductive competition has favored the evolution of secondary sexual characters, alternative mating tactics, and probably nest-defense behavior. Salmonids provide good examples of character divergence in response to ecological release and of parallel evolution. The great phenotypic plasticity of these fishes may facilitate speciation.
    [Show full text]
  • Charrs of the Genus Salvelinus (Salmonidae): Hybridization, Phylogeny and Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/817775; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Charrs of the genus Salvelinus (Salmonidae): hybridization, phylogeny and evolution ALEXANDER G. OSINOV1, ALEXANDER A.VOLKOV2, NIKOLAI S. MUGUE2, 1Biological Faculty, Lomonosov Moscow State University, Moscow, 119991 Russia 2Russian Federal Research Institute of Fisheries and Oceanography (VNIRO), Moscow, 107140 Russia Running heads: PHYLOGENY AND HYBRIDIZATION IN SALVELINUS Corresponding author. E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/817775; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 ABSTRACT Evolutionary history, systematics and taxonomy of charrs of the genus Salvelinus and especially of the representatives of the S. alpinus – S. malma species complex remain confused that is connected with a substantial ecological and morphological flexibility of this group and with supposed ancient hybridization between some taxa. For the analysis of phylogenetic relationships and introgressive hybridization between the species of the genus Salvelinus including three endemic species from Lake El’gygytgyn and all main representatives of the S. alpinus – S. malma species complex, nucleotide sequences of mtDNA control region (960 bp) and two nuclear genes (ITS1 (581 bp) and RAG1 (899 bp)) were analyzed. The differences in the topologies of individual gene trees, among others reasons, were connected with incomplete lineage sorting and historical introgressive hybridization between certain taxa.
    [Show full text]
  • Wetlands in Russia
    WETLANDS IN RUSSIA Volume 4 Wetlands in Northeastern Russia Compiled by A.V.Andreev Moscow 2004 © Wetlands International, 2004 All rights reserved. Apart from any fair dealing for the purpose of private study, research, criticism, or review (as permitted under the Copyright Designs and Patents Act 1988) no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrical, chemical, mechanical, optical, photocopying, recording or otherwise, without prior permission of the copyright holder. The production of this publication has been generously supported by the Ministry of Agriculture, Nature and Food Quality, The Netherlands Citation: Andreev, A.V. 2004. Wetlands in Russia, Volume 4: Wetlands in Northeastern Russia. Wetlands International–Russia Programme.198 pp. ISBN 90-5882-024-6 Editorial Board: V.O.Avdanin, V.G.Vinogradov, V.Yu. Iliashenko, I.E.Kamennova, V.G.Krivenko, V.A.Orlov, V.S.Ostapenko, V.E.Flint Translation: Yu.V.Morozov Editing of English text: D. Engelbrecht Layout: M.A.Kiryushkin Cover photograph: A.V.Andreev Designed and produced by KMK Scientific Press Available from: Wetlands International-Russia Programme Nikoloyamskaya Ulitsa, 19, stroeniye 3 Moscow 109240, Russia Fax: + 7 095 7270938; E-mail: [email protected] The presentation of material in this publication and the geographical designations employed do not imply the expression of any opinion whatsoever on the part of Wetlands International, concerning the legal status of any territory or area,
    [Show full text]
  • Other Body Administered by the Natural Environment Research Council, As the Institute of Freshwater Ecology (IFE)
    Published work on freshwater science from the FBA, IFE and CEH, 1929-2006 Item Type book Authors McCulloch, I.D.; Pettman, Ian; Jolly, O. Publisher Freshwater Biological Association Download date 30/09/2021 19:41:46 Link to Item http://hdl.handle.net/1834/22791 PUBLISHED WORK ON FRESHWATER SCIENCE FROM THE FRESHWATER BIOLOGICAL ASSOCIATION, INSTITUTE OF FRESHWATER ECOLOGY AND CENTRE FOR ECOLOGY AND HYDROLOGY, 1929–2006 Compiled by IAN MCCULLOCH, IAN PETTMAN, JACK TALLING AND OLIVE JOLLY I.D. McCulloch, CEH Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK Email: [email protected] I. Pettman*, Dr J.F. Talling & O. Jolly, Freshwater Biological Association, The Ferry Landing, Far Sawrey, Ambleside, Cumbria LA22 0LP, UK * Email: [email protected] Editor: Karen J. Rouen Freshwater Biological Association Occasional Publication No. 32 2008 Published by The Freshwater Biological Association The Ferry Landing, Far Sawrey, Ambleside, Cumbria LA22 0LP, UK. www.fba.org.uk Registered Charity No. 214440. Company Limited by Guarantee, Reg. No. 263162, England. © Freshwater Biological Association 2008 ISSN 0308-6739 (Print) ISSN 1759-0698 (Online) INTRODUCTION Here we provide a new listing of published scientific contributions from the Freshwater Biological Association (FBA) and its later Research Council associates – the Institute of Freshwater Ecology (1989–2000) and the Centre for Ecology and Hydrology (2000+). The period 1929–2006 is covered. Our main aim has been to offer a convenient reference work to the large body of information now available. Remarkably, but understandably, the titles are widely regarded as the domain of specialists; probably few are consulted by administrators or general naturalists.
    [Show full text]
  • Submirted to the Tåjil'trgraduate Studies in Partial Fulfillment of the Requirements for the Degree Of
    Identification of Arctic char stocks in the Cambridge Bay Area, Nunavut Territory, and evidence of stock mixing during overwintering by Allan H. Kristofferson submirted to the tåJil'TrGraduate studies in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of ZoologY University of Manitoba Winnipeg, Manitoba November,2002 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES *+*** COPYRIGHT PERMISSION PAGE IDENTIFICATION OF ARCTIC CHAR STOCKS IN THE CAMBRIDGE BAY AREA. NUNAWT TERRITORY' AND EVIDENCE OF STOCK MIXING DURING OVERWINTERING BY ALLAN H. KRISTOFFERSON A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy ALLAN H. KRISTOFFERSON @ 2OO2 Permission has granted been to the Library of The university of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend orìell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum. The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. I ABSTRACT I examined samples of anadromous Arctic char spawners from twelve locations in the Cambridge Bay area, Nunavut Territory, for evidence of stock structuring. These samples could be distinguished from one another on the basis of differences in morphologicai characters, using discriminant function analysis. Significant differences in the means of morphometric characters (ANOVA, minimum p < 0.05) were evident for most pair-wise comparisons.
    [Show full text]
  • Research Article Comparative Study of Genome Divergence in Salmonids with Various Rates of Genetic Isolation
    Hindawi Publishing Corporation International Journal of Genomics Volume 2013, Article ID 629543, 16 pages http://dx.doi.org/10.1155/2013/629543 Research Article Comparative Study of Genome Divergence in Salmonids with Various Rates of Genetic Isolation Elena A. Shubina,1,2 Mikhail A. Nikitin,1 Ekaterina V. Ponomareva,1 Denis V. Goryunov,1 andOlegF.Gritsenko3 1 Belozersky Institute for Physico-Chemical Biology of Lomonosov Moscow State University, Leninskie gory, 1, Moscow 119991, Russia 2 Biological Department of Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia 3 Russian Federative Research Institute of Fisheries and Oceanology, 17A V. Krasnoselskaya Street, Moscow 107140, Russia Correspondence should be addressed to Elena A. Shubina; [email protected] Received 15 October 2012; Revised 22 March 2013; Accepted 15 May 2013 Academic Editor: Dmitry Sherbakov Copyright © 2013 Elena A. Shubina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of the study is a comparative investigation of changes that certain genome parts undergo during speciation. The research was focused on divergence of coding and noncoding sequences in different groups of salmonid fishes of the SalmonidaeSalmo, ( Parasalmo, Oncorhynchus,andSalvelinus genera) and the Coregonidae families under different levels of reproductive isolation. Two basic approaches were used: (1) PCR-RAPD with a 20–22 nt primer design with subsequent cloning and sequencing of the products and (2) a modified endonuclease restriction analysis. The restriction fragments were shown with sequencing to represent satellite DNA.
    [Show full text]