Westslope Cutthroat Trout Oncorhynchus Clarkii Lewisi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Phylogeny of Oncorhynchus (Euteleostei: Salmonidae) Based on Behavioral and Life History Characters
Copeia, 2007(3), pp. 520–533 The Phylogeny of Oncorhynchus (Euteleostei: Salmonidae) Based on Behavioral and Life History Characters MANU ESTEVE AND DEBORAH A. MCLENNAN There is no consensus between morphological and molecular data concerning the relationships within the Pacific basin salmon and trout clade Oncorhynchus. In this paper we add another source of characters to the discussion. Phylogenetic analysis of 39 behavioral and life history traits produced one tree structured (O. clarki (O. mykiss (O. masou (O. kisutch (O. tshawytscha (O. nerka (O. keta, O. gorbuscha))))))). This topology is congruent with the phylogeny based upon Bayesian analysis of all available nuclear and mitochondrial gene sequences, with the exception of two nodes: behavior supports the morphological data in breaking the sister-group relationship between O. mykiss and O. clarki, and between O. kisutch and O. tshawytscha. The behavioral traits agreed with molecular rather than morphological data in placing O. keta as the sister-group of O. gorbuscha. The behavioral traits also resolve the molecular-based ambiguity concerning the placement of O. masou, placing it as sister to the rest of the Pacific basin salmon. Behavioral plus morphological data placed Salmo, not Salvelinus, as more closely related to Oncorhynchus, but that placement was only weakly supported and awaits collection of missing data from enigmatic species such as the lake trout, Salvelinus namaycush. Overall, the phenotypic characters helped resolve ambiguities that may have been created by molecular introgression, while the molecular traits helped resolve ambiguities introduced by phenotypic homoplasy. It seems reasonable therefore, that systematists can best respond to the escalating biodiversity crisis by forming research groups to gather behavioral and ecological information while specimens are being collected for morphological and molecular analysis. -
2008 Annual Report
Document ID #P113359 Report covers work performed under BPA contract #26763 Report was completed under BPA contract #34772 REPORT ON THE PREDATION INDEX, PREDATOR CONTROL FISHERIES, AND PROGRAM EVALUATION FOR THE COLUMBIA RIVER BASIN EXPERIMENTAL NORTHERN PIKEMINNOW MANAGEMENT PROGRAM 2008 ANNUAL REPORT Prepared by: Russell Porter Pacific States Marine Fisheries Commission In Cooperation with: Oregon Department of Fish and Wildlife Washington Department of Fish and Wildlife U.S. Department of Agriculture Prepared for: U.S. Department of Energy Bonneville Power Administration Environment, Fish and Wildlife P.O. Box 3621 Portland, OR 97208-3621 Project Number 199007700 Contract Number 00026763 Table of Contents Executive Summary 5 Report A – Sport Reward Fishery in the Columbia and Snake Rivers 10 Abstract 11 Introduction 12 Methods of Operation 13 Fishery Operation 13 Boundaries and Season 13 Registration Stations 14 Reward System 14 Angler Sampling 15 Returning Anglers 16 Non-Returning Anglers 16 Northern Pikeminnow Handling Procedures 17 Biological Sampling 17 PIT Tag Detection 17 Northern Pikeminnow Processing 18 Results and Discussion 18 Northern Pikeminnow Harvest 18 Harvest by Week 19 Harvest by Fishing Location 20 Harvest by Registration Station 21 Harvest by Species/Incidental Catch 22 Angler Effort 24 Effort by Week 25 Effort by Fishing Location 27 Effort by Registration Station 27 Catch Per Angler Day (CPUE) 28 CPUE by Week 29 CPUE by Fishing Location 30 CPUE by Registration Station 30 Angler Totals 31 Tag Recovery 34 Northern -
California Golden Trout Chances for Survival: Poor 2 Oncorhynchus Mykiss Aguabonita
California Golden Trout chances for survival: poor 2 Oncorhynchus mykiss aguabonita alifornia golden trout, the official state fish, is one of three species disTriBuTion: California golden trout are endemic to imple mented. major efforts have been made to create refugia 1 2 3 4 5 TROUT south Fork Kern river and to Golden trout Creek. they for golden trout in the upper reaches of the south Fork Kern of brilliantly colored trout native to the upper Kern river basin; the have been introduced into many other lakes and creeks in river by constructing barriers and then applying the poison others are the little Kern golden trout and Kern river rainbow trout. and outside of California, including the Cottonwood lakes rotenone to kill all unwanted fish above barriers. Despite California Golden Trout Were not far from the headwaters of Golden trout Creek and into these and other efforts, most populations of California golden Historically Present in South Fork Kern C Basin, Part Of The Upper Kern River California golden trout evolved in streams of the southern sierra Nevada the headwaters of south Fork Kern river, such as mulkey trout are hybridized and are under continual threat from Basin Shown Here Creek. the Cottonwood lakes have been a source of golden brown trout invasions. management actions are needed to mountains, at elevations above 7,500 feet. the Kern plateau is broad and flat, trout eggs for stocking other waters and are still used for address threats to California golden trout which include with wide meadows and meandering streams. the streams are small, shallow, stocking lakes in Fresno and tulare Counties. -
Environmental Impact Study Stage 1 Final – Rev 0
202 - 2780 Veterans Memorial Parkway Victoria, BC, V9B 3S6 Phone: 778-433-2672 web: www.greatpacific.ca E-Mail: [email protected] COWICHAN VALLEY REGIONAL DISTRICT MARINE DISCHARGE OUTFALL ENVIRONMENTAL IMPACT STUDY STAGE 1 FINAL – REV 0 Attention: Cowichan Valley Regional District 175 Ingram Street Duncan, BC V9L 1N8 June 25, 2015 1019-001 REV 0 Cowichan Valley Regional District Marine Discharge Outfall - EIS Executive Summary The Cowichan Valley Regional District (CVRD) is undertaking the development of Amendment 3 to the existing Central Sector Liquid Waste Management Plan (CSLWMP). The Central Sector is serviced by the Joint Utilities Board (JUB) Lagoon Systems co-owned by the City of Duncan and the Municipality of North Cowichan, and also provides service to properties within parts of CVRD Electoral Areas D and E and parts of Cowichan Tribes reserve. The Joint Utilities Board (JUB) sewage treatment lagoons are located adjacent to the Cowichan River. The aerated lagoon treatment system produces secondary quality effluent, which is disinfected by chlorination, then dechlorinated. Treated wastewater is discharged into the lower reaches of the Cowichan River and subsequently to the Cowichan Estuary and ocean environment. In recent years, low flows in the Cowichan River have resulted in a situation where there is insufficient dilution of the effluent plume with respect to the river flow. This resulted in the temporary closure of the Cowichan River to recreational activities in August of 2014. It is proposed that the point of discharge be moved from the Cowichan River to the marine environment of Satellite Channel, where significantly more dilution can be achieved and where the likelihood of interaction between the effluent plume and sensitive areas can be reduced. -
Edna Assay Development
Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake* -
Sport-Fish-Identification.Pdf
Walleye Walleye have two distinct fins on their back, the first with large spines. Lake Sturgeon They have a yellow-olive back, brassy, silvery sides with yellow spots, a white underside, and white on the lower lobe of the tail. Dusky vertical Lake Sturgeon are a Threatened Species due to population size and bars are often found on the body as well. concerns with viability. Lake Sturgeon have a large brown or grey body covered with tough, leather- like tissue and five rows of bony plates. They have a shark-like, upturned tail and a pointed snout with four barbels. Sauger Lake Whitefish are olive-green to blue on the back, with silvery sides.They Sauger are a Threatened Species due to hybridization, habitat Lakehave a small Whitefish mouth below a rounded snout, and a deeply forked tail. degradation and overharvest. Sauger are golden olive on the back with silver-yellow sides and a white underside. They also have a large spiny dorsal fin, distinct rows of spots on the dorsal fins and three or four dusky vertical bars on the body. Mountain Whitefish have large scales, no spots and small mouths with no Burbot Mountainteeth. Their general Whitefish body colour is a bronze-white or greenish white. Burbot have a slim, brownish black body with smooth skin, a flattened head, and a fin that stretches along the back half of the body. Distinctive barbels hang from the lower jaw and nostrils. Goldeye Northern Pike Goldeye have prominent eyes with bright yellow pupils, a blunt head, and Northern Pike are a long, slender fish with duck-like jaws and a long, flat a deep, compressed body. -
KR/KL Burbot Conservation Strategy
January 2005 Citation: KVRI Burbot Committee. 2005. Kootenai River/Kootenay Lake Conservation Strategy. Prepared by the Kootenai Tribe of Idaho with assistance from S. P. Cramer and Associates. 77 pp. plus appendices. Conservation strategies delineate reasonable actions that are believed necessary to protect, rehabilitate, and maintain species and populations that have been recognized as imperiled, but not federally listed as threatened or endangered under the US Endangered Species Act. This Strategy resulted from cooperative efforts of U.S. and Canadian Federal, Provincial, and State agencies, Native American Tribes, First Nations, local Elected Officials, Congressional and Governor’s staff, and other important resource stakeholders, including members of the Kootenai Valley Resource Initiative. This Conservation Strategy does not necessarily represent the views or the official positions or approval of all individuals or agencies involved with its formulation. This Conservation Strategy is subject to modification as dictated by new findings, changes in species status, and the completion of conservation tasks. 2 ACKNOWLEDGEMENTS The Kootenai Tribe of Idaho would like to thank the Kootenai Valley Resource Initiative (KVRI) and the KVRI Burbot Committee for their contributions to this Burbot Conservation Strategy. The Tribe also thanks the Boundary County Historical Society and the residents of Boundary County for providing local historical information provided in Appendix 2. The Tribe also thanks Ray Beamesderfer and Paul Anders of S.P. Cramer and Associates for their assistance in preparing this document. Funding was provided by the Bonneville Power Administration through the Northwest Power and Conservation Council’s Fish and Wildlife Program, and by the Idaho Congressional Delegation through a congressional appropriation administered to the Kootenai Tribe by the Department of Interior. -
Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout in Low Order Streams of Western Oregon and Washington, USA
fishes Article Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout in Low Order Streams of Western Oregon and Washington, USA Kyle D. Martens 1,* and Jason Dunham 2 1 Washington Department of Natural Resources, 1111 Washington Street SE, Olympia, WA 98504, USA 2 U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; [email protected] * Correspondence: [email protected] Abstract: When multiple species of fish coexist there are a host of potential ways through which they may interact, yet there is often a strong focus on studies of single species without considering these interactions. For example, many studies of forestry–stream interactions in the Pacific Northwest have focused solely on the most prevalent species: Coastal cutthroat trout. To examine the potential for interactions of other fishes with coastal cutthroat trout, we conducted an analysis of 281 sites in low order streams located on Washington’s Olympic Peninsula and along the central Oregon coast. Coastal cutthroat trout and juvenile coho salmon were the most commonly found salmonid species within these streams and exhibited positive associations with each other for both presence and density. Steelhead were negatively associated with the presence of coastal cutthroat trout as well as with coho salmon and sculpins (Cottidae). Coastal cutthroat trout most frequently shared streams with juvenile coho salmon. For densities of these co-occurring species, associations between these two species were relatively weak compared to the strong influences of physical stream conditions Citation: Martens, K.D.; Dunham, J. (size and gradient), suggesting that physical conditions may have more of an influence on density Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout than species interactions. -
Cowichan River Chinook Salmon Incubation Assessment, 2005-2006
Cowichan River Chinook Salmon Incubation Assessment, 2005–2006 Prepared For Pacific Salmon Commission 600 - 1155 Robson Street Vancouver, BC V6E 1B5 (604) 684-8081 July 14, 2006 By D.W. Burt1 and E. Ellis2 2 1 D. Burt and Associates Kerr Wood Leidal Associates Ltd. 2245 Ashlee Road 200 – 4185A Still Creek Drive Nanaimo, BC, V9R 6T5 Burnaby, BC, V5C 6G9 (250) 753-0027 (604) 294-2088 [email protected] [email protected] EXECUTIVE SUMMARY This purpose of this study was to determine whether upstream sediment sources are adversely affecting egg-to-fry survival of Cowichan River chinook salmon. This information is necessary to determine whether remedial action to eliminate/diminish these sediment sources is warranted to assist in the recovery of Cowichan River chinook stocks. The specific objectives of the study were to: 1) monitor suspended sediment levels above and below known point sources at various flows during the 2005-2006 winter, 2) determine the level of fine sediment in selected spawning sites above and below the major sediment sources, 3) assess incubation survival by in situ trials and by hydraulic sampling at selected spawning sites above and below the major sediment sources, and 4) undertake a literature review on the effects of fine sediment on egg-to-fry survival. Suspended sediment levels were monitored by taking in situ turbidity measurements and by collecting water samples for lab analysis of total suspended solids (TSS). Substrate composition of spawning beds was assessed by collection of sediment samples at 1 site above the sediment sources (control) and 2 sites below the sediment sources (test sites). -
Development of a System-Wide Predator Control Program: Northern Squawfish Management Program
Development of a System-wide Predator Control Program Northern Squawfish Management Program - Implementation Annual Report 1997 October 1998 DOE/BP-24514-8 This Document should be cited as follows: Young, Franklin, "Development of a System-wide Predator Control Program; Northern Squawfish Management Program - Implementation", 1997 Annual Report, Project No. 199007700, 100 electronic pages, (BPA Report DOE/BP-24514-8) Bonneville Power Administration P.O. Box 3621 Portland, OR 97208 This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA. DEVELOPMENT OF A SYSTEMWIDE PREDATOR CONTROL PROGRAM: STEPWISE IMPLEMENTATION OF A PREDATION INDEX, PREDATOR CONTROL FISHERIES, AND EVALUATION PLAN IN THE COLUMBIA RIVER BASIN SECTION I: IMPLEMENTATION 1997 ANNUAL REPORT Prepared by: Franklin R. Young Columbia Basin Fish and Wildlife Authority In Cooperation With Nez Perce Tribe of Idaho Oregon Department of Fish and Wildlife Washington Department of Fish and Wildlife Pacific States Marine Fisheries Commission Columbia River Inter-tribal Fish Commission Confederated Tribes of the Umatilla Indian Reservation Confederated Tribes of the Warm Springs Reservation of Oregon Confederated Tribes and Bands of the Yakama Indian Reservation Prepared -
Bonneville Cutthroat Trout (Oncorhynchus Clarki Utah) Bonneville Cutthroat Trout Is One of Three Cutthroat Trout Subspecies Native to Utah
FISH Bonneville Cutthroat Trout (Oncorhynchus clarki utah) Bonneville cutthroat trout is one of three cutthroat trout subspecies native to Utah. Bonneville cutthroat trout historically occurred in the Pleistocene Lake Bonneville basin, which included portions of Idaho, Nevada, Utah, and Wyoming (Kershner 1995). The desiccation of Lake Bonneville into the smaller Great Salt Lake and fragmentation of other stream and lake habitats may have led to three slightly differentiated groups of Bonneville cutthroat trout. These groups are found in the Bonneville basin proper, the Bear River drainage, and the Snake Valley (Behnke 1992). There are five known populations of pure strain Bonneville cutthroat trout on the Fishlake National Forest inhabiting approximately 38 miles of stream habitat. There are several recently reintroduced populations, and several small potential remnant populations. Habitat for the Bonneville cutthroat trout is widely distributed and variable. It ranges from high elevation (3,500 m mean sea level) streams with coniferous and deciduous riparian trees to low elevation (1,000 m mean sea level) streams in sage-steppe grasslands containing herbaceous riparian zones. As such, Bonneville cutthroat trout have adapted to a broad spectrum of habitat conditions throughout their range (Kershner 1995). Sexual maturity is typically reached during the second year for males and the third year for females (May et al. 1978). Both the age at maturity and the annual timing of spawning vary geographically with elevation, temperature, and life history strategy. Lake resident trout may begin spawning at two years of age and usually continue throughout their lives, while adfluvial individuals may not spawn for several years. -
Snow Survey and Water Supply Bulletin – February 1 , 2018
Snow Survey and Water Supply Bulletin – February 1st, 2018 The February 1st snow survey is now complete. Data from 86 snow courses and 69 automated snow weather stations around the province, collected by the Ministry of Environment Snow Survey Program and partners, and climate data from Environment and Climate Change Canada have been used to form the basis of the following report1. Weather January weather patterns affecting British Columbia were mixed. Generally, the month featured above-normal (+0.5 to 2.0˚C) temperatures across most of the province, with areas of warmer temperatures in the Kootenays. The first half of the month was mild with light precipitation and subdued snow accumulation. Several significant storm events affected the province in the second half of January, especially for the southern half of the province. An atmospheric river in late January created flood conditions on Vancouver Island. January precipitation totals were well above normal for the southern half of BC, while the Northwest and North Coast regions were below normal. Snowpack Snow basin indices for February 1st 2018 range from a low of 51% of normal in the Northwest to a high of 165% in the Skagit (Table 1 and Figure 1). Overall, the province has a slightly-above normal snow pack for February 1st, with the average of all snow measurements across the province at 108%, increasing significantly from 96% of normal on January 1st. Well-below normal snowpack is present in the Stikine (67%) and Northwest (51%). Well-above normal snow pack (>130%) is present in the Okanagan, Similkameen, Lower Fraser, South Coast, Skagit and Vancouver Island.