Human Motion Control Proprioception Open and Closed Loop Control

Total Page:16

File Type:pdf, Size:1020Kb

Human Motion Control Proprioception Open and Closed Loop Control Proprioception Open and closed loop control • Introduction Human Motion Control – Musculoskeletal system with proprioceptive feedback 2008-2009 – Role of sensors Proprioception • Nervous system – Central nervous system – Peripheral nervous system – Sensors and neurons • Information Processing – Organization & reflexes • Sensors in motor pathways – Joint capsule sensors – Muscle spindles – Golgi Tendon Organs Proprioception Proprioception Proprioception Loss of proprioception Have you ever said any of the following? Example loss of proprioception: Ian Waterman from proprius Latin for “one’s own” and - “I think I smell gas!” - No sensory feedback below the neck perception. - “Did you hear that sound?” - Not paralyzed! - “I have a headache.” - One of only 10 patients in the world. The body's awareness of position, posture, - “I just noticed my elbow is slightly flexed and movement and changes in equilibrium my hand is approximately 30 centimeters away from my face.” The man who lost Proprioception happens unconsciously. his body 1 Sensors Central Nervous System (CNS) Structure of the CNS • 1011 neurons • Vestibulary system: Translational and rotational accelerations of the head • 104 synapses per neuron: • Visual system: Position and velocity information 1015 synapses • Tactile system: External force information • A-synchronous processing • Joint capsule receptors: Joint angle • Distributed information storage • Muscle spindles: Muscle length and contractile velocity • Golgi tendon organs: Muscle Force Sensory integration Central Nervous System CNS Sensory and motor projections Sensory and motor projections The Brain in the cortex in the cortex Cerebrum Higher brain functions like: speech, emotions, reasoning, movements, vision, memory, etc… Cerebellum Brain stem Regulation and coordination Basic vital life functions of movement, posture and like breathing, heartbeat, balance. Sensory system Motor system blood pressure. Sensory system Motor system 2 CNS CNS Building block of the CNS: the neuron Spinal cord Spinal cord 3. Ventral root: motor output to muscles 5. Dorsal root ganglia: contains cell bodies of sensory neurons 6. Dorsal root: sensory input to spinal cord 9. Posterior horn: spinal interneurons 10. Anterior horn: alpha motoneurons 2. White matter: myelinated axons 4. Grey matter: nerve cell bodies Connections between CNS and PNS: Connections between neurons: Organisation of neurons: Neurons synapses nerve fibers • Neuron also called “nerve cell” • Dendrites • Junction between two – receive incoming spikes. – diffusely branched neurons or between – one neuron generally has many dendrites. neuron and effector • Axon • Between 1,000 - – transmits information. 10,000 synapses per – one neuron has one axon. – length up to one meter. neuron • Axon terminals • Electrical (few) or – communicate output to other neurons chemical (most) (or muscles). – One axon generally has multiple terminals 3 Types of somatic sensory nerve endings Types of somatic sensory nerve endings Neural integration: neuronal pools (skin) (musculoskeletal system) Muscle spindle Golgi tendon organ muscle stretch and tendon force Touch, dynamic stretch velocity pressure Deep pressure, Skin stretch Touch, static Pain, temperature, vibration pressure crude touch Neural integration: Neural integration Simplified structure of the CNS Motoric Pyramidal & Extrapyramidal tracts (CNS and PNS) • The somatic sensory system • the motor division voluntary Pyramidal & extrapyramidal tracts automated efferent afferent Pyramidal system or Extrapyramidal system or “selective control system” “automatic control system” 4 Information processing Reflexes Reflex loops Association neuron Sensory neuron • Short latency reflexes (about 50 ms): Receptor • Cortex complex – Spinal cord – Monosynaptic (excitation of same muscle that received stimulus) – motor control – Act like delayed ‘stiffness’ and ‘viscosity’ (position and velocity • Lower brain feedback) – subconscious activities, coordinate functions • Medium latency reflexes (about 70 - 100 ms) – medulla, pons, cerebellum, basal ganglia – Spinal cord / Brain stem • Spinal cord – Coordinated reflex between antagonistic muscle pairs – Adequate response to perturbation – reflexes basic • Long latency reflexes Integrating center Motor neuron – Cerebellum Effector – Well-coordinated reflex responses for muscle system of one limb Reflex: involuntary response to a stimulus. Response is initiated before the subject is aware of it. Monosynaptic reflex: patellar reflex Multisynaptic reflex: withdrawal reflex Reciprocal inhibition 1. Subject steps on • Antagonist muscle is inhibited tack. when agonist muscle is excited. 2. Leg flexes as • Increases effectiveness response to pain. 3. Opposite leg • Increases efficiency. extends for weight support. 1. Hammer tap stretches tendon muscle sensors stretch. 2. Sensory neuron excites spinal motor neuron of extensor. 3. Sensory neuron inhibits flexor motor neuron through interneuron/ 5 Injuries to the CNS & PNS affecting Sensors in motor pathways reflexes Sensors in the joint capsule • Joints – Stretch receptors • Muscles – Golgi tendon organ – Muscle spindle Sensors in the joint capsule Sensors in the muscles Golgi Tendon Organ • Mainly stretch receptors in ligaments • Golgi Tendon Organs: • Only signaling towards outer position of the – In series with the muscle fibers joint – strain in tendon ≈ force in muscle • Not appropriate for proportional control of joint angle • Muscle spindles: • Slow adaptation – parallel to muscle fibers – sensitive to length and contraction velocity • Presumed to have role in error – active ‘intra-fusal’ muscle fibers, passive sensory part 160x signaling for learning – innervated by γ motor neurons 6 Golgi Tendon Organ Muscle spindle Muscle spindle: Length and velocity feedback • Strain in tendon force • Ib afferent nerve fiber • About 50 GTOs per muscle • Sensitive to a few motor-units (active force) • Less sensitive to passive muscle stretch • Contribution to position feedback: Compensates (slow) muscle dynamics • Comparable with pressure feedback in muscle length muscle velocity Muscle Ia afferent nerve hydraulic actuators γ γs-motor neuron Spindle II afferent nerve γd-motor neuron demo Muscle spindle sensory part Mechanical equivalent of spindle Response muscle spindle α motor neuron • Nuclear bag fiber: – length: 7-8 mm – senses velocity tendon Ia, II tendon γ motor neuron • Nuclear chain fiber: • Extra-fusal fibers innervated by: α motor neurons – length: 3-4 mm • Intra-fusal fibers innervated by: γ motor neurons – senses length • Sensor is sensitive to – stretch: II afferents – stretch and stretch velocity: Ia afferents stretch: II afferents • Goal of gamma-activation: keep muscle spindle pre- stretch & stretch velocity: Ia afferents tensed and regulate sensor gain. 7 Function γ-activation • Type Ia afferent – sensory information from the central annulospiral endings of Competitive summation in Ia fibers all the intrafusal fibres • excitatory effect (mono- or polysynaptic) on the alpha motorneurons of the same muscle (and its synergists) • Connection of nerve from nuclear chain and nuclear • inhibitory effects (via interneurons) on antagonist alpha motorneurons bag has no synapse. • Spike trains do not merge. • ‘Winner takes all’: – Nerve ending with highest frequency overrules competitors by ‘antidromic inhibition’ – Max-operation • During posture: Length information • Type II afferent • During motion: – sensory information from the secondary endings, mainly associated with chain fibres. Velocity information • excites alpha motorneurons of the same muscle via polysynaptic • Adjustment of operating point (optimal sensitivity) pathways. • Adjustment feedback gain of reflex loop demo Summary Muscle spindle Transmission speeds of neurons ‘Open-loop’ musculoskeletal models (measured in cat, humans about 20% slower) • Length and contraction velocity information Muscle length • γ-activation: Reflex gain, sensor sensitivity Group Diameter (µm) Transmission Sensor Stimulus -r speed (m/s) Muscle velocity • Length feedback: Contributes to additional Ia 12 – 20 70 – 100 muscle length & -r spindle velocity Mex ‘stiffness’ of muscle Ib 12 – 20 70 – 100 Golgi tendon force muscle Skeletal organ r — — dynamics inertia • Velocity feedback: Contributes to additional II 6 – 12 35 – 70 muscle length α F M θ spindle ‘viscosity’ of muscle 2 – 5 12 - 30 Pacini sensors pressure 0.5 – 2 0.5 – 2.5 free nerve nociceptive Passive • Time-delays in nervous system results in endings visco-elasticity additional dynamic behavior Result depends on: •Inertia, passive visco-elasticity •Intrinsic muscle properties: length & velocity dependency muscle 8 Closed loop control Closed loop musculoskeletal models Conclusion Km(u0) -r disturbance + + • Musculoskeletal system needs feedback Bm (u0) -r setpoint Central + position u Mex • Human nervous system comprises integrated α + Skeletal nervous muscle skeleton Hact r — — feedback systems inertia + - system + + + F M θ – Reflex loops at different levels of organization τ Golgi – some sensors are also feedback systems Ib τ visual τ -r • Feedback sensors vestibulary + Ia τ sensor Muscle – muscle spindles tactile τ -r – golgi tendon organis capsule II Spindle muscle spindle – joint capsule stretch sensors Golgi tendon organ γs γd 9.
Recommended publications
  • Somatosensory Systems
    Somatosensory Systems Sue Keirstead, Ph.D. Assistant Professor Dept. of Integrative Biology and Physiology Stem Cell Institute E-mail: [email protected] Tel: 612 626 2290 Class 9: Somatosensory System (p. 292-306) 1. Describe the 3 main types of somatic sensations: 1. tactile: light touch, deep pressure, vibration, cold, hot, etc., 2. pain, 3. Proprioception. 2. List the types of sensory receptors that are found in the skin (Figure 9.11) and explain what determines the optimum type of stimulus that will activate each. 3. Describe the two different modality-specific ascending somatosensory pathways and note which modalities are carried in each (Figure 9.10 and 9.13). 4. Describe how it is possible for us to differentiate between stimuli of different modalities in the same body part (i.e. fingertip). Consider this at the level of 1) the sensory receptors and 2) the neurons onto which they synapse in the ascending sensory systems. 5. Explain how one might determine the location of a spinal cord injury based on the modality of sensation that is lost and the region of the body (both the side of the body and body part) where sensation is lost (Figure 9.18). 6. Describe how incoming sensory inputs from primary sensory axons can be modified at the level of the spinal cord and relate this to the mechanism of action of some common pain medications (Figure 9-18). 7. Describe the homunculus and explain the significance of the size of the region of the somatosensory cortex devoted to a particular body part. Cerebral cortex Interneuron Thalamus Interneuron 4 Integration of sensory Stimulus input in the CNS 1 Stimulation Sensory Axon of sensory of sensory receptor neuron receptor Graded potential Action potentials 2 Transduction 3 Generation of of the stimulus action potentials Copyright © 2016 by John Wiley & Sons, Inc.
    [Show full text]
  • Interpretation of Sensory Information from Skeletal Muscle Receptors for External Control Milan Djilas
    Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control Milan Djilas To cite this version: Milan Djilas. Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control. Automatic. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00333530 HAL Id: tel-00333530 https://tel.archives-ouvertes.fr/tel-00333530 Submitted on 23 Oct 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC T H E S E pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Formation doctorale: SYSTEMES AUTOMATIQUES ET MICROELECTRONIQUES Ecole Doctorale: INFORMATION, STRUCTURES ET SYSTEMES présentée et soutenue publiquement par Milan DJILAS le 13 octobre 2008 Titre: INTERPRETATION DES INFORMATIONS SENSORIELLES DES RECEPTEURS DU MUSCLE SQUELETTIQUE POUR LE CONTROLE EXTERNE INTERPRETATION OF SENSORY INFORMATION FROM SKELETAL MUSCLE RECEPTORS FOR EXTERNAL CONTROL JURY Jacques LEVY VEHEL Directeur de Recherches, INRIA Rapporteur
    [Show full text]
  • Tissue Engineered Myelination and the Stretch Reflex Arc Sensory Circuit: Defined Medium Ormulation,F Interface Design and Microfabrication
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Tissue Engineered Myelination And The Stretch Reflex Arc Sensory Circuit: Defined Medium ormulation,F Interface Design And Microfabrication John Rumsey University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Rumsey, John, "Tissue Engineered Myelination And The Stretch Reflex Arc Sensory Circuit: Defined Medium Formulation, Interface Design And Microfabrication" (2009). Electronic Theses and Dissertations, 2004-2019. 3826. https://stars.library.ucf.edu/etd/3826 TISSUE ENGINEERED MYELINATION AND THE STRETCH REFLEX ARC SENSORY CIRCUIT: DEFINED MEDIUM FORMULATION, INTERFACE DESIGN AND MICROFABRICATION by JOHN WAYNE RUMSEY B.S. University of Florida, 2001 M.S. University of Central Florida, 2004 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Fall Term 2009 Major Professor: James J. Hickman ABSTRACT The overall focus of this research project was to develop an in vitro tissue- engineered system that accurately reproduced the physiology of the sensory elements of the stretch reflex arc as well as engineer the myelination of neurons in the systems. In order to achieve this goal we hypothesized that myelinating culture systems, intrafusal muscle fibers and the sensory circuit of the stretch reflex arc could be bioengineered using serum-free medium formulations, growth substrate interface design and microfabrication technology.
    [Show full text]
  • BRS Physiology 3Rd Edition
    Board Review Series • Reflects USMLE changes • Approximately 350 USMLE-type questions with explanations • Numerous illustrations, diagrams, and tables • Easy-to-follow outline covering all USMLE-tested topics • A comprehensive examination V Ah, LIPPINCOTT -"*" WILLIAMS &WILKIN; mum IEEE mows IF 'IMP IMMO MINK I I. Key Physiology Topics for USMLE Step I Cell Physiology Transport mechanisms Ionic basis for action potential Excitation-contraction coupling in skeletal, cardiac, and smooth muscle Neuromuscular transmission Autonomic Physiology Cholinergic receptors Adrenergic receptors Effects of autonomic nervous system on organ system function Cardiovascular Physiology Events of cardiac cycle Pressure, flow, resistance relationships Frank-Starling law of the heart Ventricular pressure-volume loops Ionic basis for cardiac action potentials Starling forces in capillaries Regulation of arterial pressure (baroreceptors and renin-angiotensin II-aldosterone system) Cardiovascular and pulmonary responses to exercise Cardiovascular responses to hemorrhage Cardiovascular responses to changes in posture Respiratory Physiology Lung and chest-wall compliance curves Breathing cycle Hemoglobin-02 dissociation curve Causes of hypoxemia and hypoxia vq, P02, and P00 2 in upright lung V/Q defects Peripheral and central chemoreceptors in control of breathing Responses to high altitude Renal and Acid-Base Physiology Fluid shifts between body fluid compartments Starling forces across glomerular capillaries Transporters in various segments of nephron (Na Cl-,
    [Show full text]
  • Neural Control and Neuromodulationof Lower Urinary
    Neural Control and Neuromodulation of Lower Urinary Tract Function William C. de Groat University of Pittsburgh Topics • Anatomy and functions of the lower urinary tract • Peripheral innervation (efferent and afferent nerves) • Central neural control of the lower urinary tract • Lower urinary tract dysfunction • Treatment of dysfunction (neuromodulation) • Research opportunities Anatomy and Functions of the Lower Urinary Tract Functions Two Types of Voiding 1. Urine storage - Reservoir: Bladder INVOLUNTARY (Reflex) (infant & fetus) Defect in 2. Urine release Maturation Maturation - Outlet: Urethra INVOLUNTARY THERAPY VOLUNTARY (Reflex) (adult) (adult) Bladder Parkinson’s, MS, stroke, brain tumors, spinal cord injury, Urethra aging, cystitis Lower Urinary Tract Innervation Two Types of Visceral Afferent Neurons: Bladder & Bowel Aδ-fibers responsible for normal bladder sensations C-fibers contribute to urgency, frequency and incontinence Afferent Sensitivity may be Influenced by Substances Released from the Urothelium Aδ fiber C fiber X CNS Urothelium The Bladder U rothelium Glycosaminoglycan Layer Uroplakin Plaques and Discoidal Vesicles r=_zo_"_"l_a_o_cc-lu---.dens } Umbrella Cell Stratum Intermediate Cell Stratum } Basal Cell Stratum Afferent Nerve fiber Urothelial-Afferent Interactions ( I ( I ( I ( ' ( I ( I ( I Urothelium ( I ( 0 I I I AChR ATP, NO, NKA, ACh, NGF ~erves ' Efferent ' nerves nerves Interaction of Sensory Pathways of Multiple Pelvic Organs Convergent Dichotomizing Branch Bladder point Colon Somatic and Visceral Afferent
    [Show full text]
  • Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia
    Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re­ entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body.
    [Show full text]
  • The Human Nervous System S Tructure and Function
    The Human Nervous System S tructure and Function S ixth Ed ition The Human Nervous System Structure and Function S ixth Edition Charles R. Noback, PhD Professor Emeritus Department of Anatomy and Cell Biology College of Physicians and Surgeons Columbia University, New York, NY Norman L. Strominger, PhD Professor Center for Neuropharmacology and Neuroscience Department of Surgery (Otolaryngology) The Albany Medical College Adjunct Professor, Division of Biomedical Science University at Albany Institute for Health and the Environment Albany, NY Robert J. Demarest Director Emeritus Department of Medical Illustration College of Physicians and Surgeons Columbia University, New York, NY David A. Ruggiero, MA, MPhil, PhD Professor Departments of Psychiatry and Anatomy and Cell Biology Columbia University College of Physicians and Surgeons New York, NY © 2005 Humana Press Inc. 999 Riverview Drive, Suite 208 Totowa, New Jersey 07512 www.humanapress.com All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission from the Publisher. All papers, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect the views of the publisher. This publication is printed on acid-free paper. h ANSI Z39.48-1984 (American Standards Institute) Permanence of Paper for Printed Library Materials. Production Editor: Tracy Catanese Cover design by Patricia F. Cleary Cover Illustration: The cover illustration, by Robert J. Demarest, highlights synapses, synaptic activity, and synaptic-derived proteins, which are critical elements in enabling the nervous system to perform its role.
    [Show full text]
  • Neural Control of Human Movement
    97818_ch19.qxd 8/4/09 4:16 PM Page 376 CHAPTER 19 Neural Control of Human Movement CHAPTER OBJECTIVES ➤ Draw the major structural components of the ➤ Outline motor unit facilitation and inhibition and brain, including the four lobes of the cerebral the contribution of each to exercise performance cortex and responsiveness to resistance training ➤ Discuss specific pyramidal and extrapyramidal ➤ Discuss variations in twitch characteristics, resist- tract functions ance to fatigue, and tension development in the different motor unit categories ➤ Diagram the anterior motor neuron and discuss its role in human movement ➤ Describe mechanisms that adjust force of muscle action along the continuum from slight to ➤ Draw and label the basic components of a maximum reflex arc ➤ Define fatigue and discuss factors that act and ➤ Define the terms (1) motor unit, (2) neuromuscular interact to induce neuromuscular fatigue junction, and (3) autonomic nervous system ➤ List and describe functions of the proprioceptors ➤ Summarize the events in motor unit excitation within joints, muscles, and tendons prior to muscle action 376 97818_ch19.qxd 8/4/09 4:16 PM Page 377 CHAPTER 19 Neural Control of Human Movement 377 The effective application of force during complex learned Brainstem movements (e.g., tennis serve, shot put, golf swing) depends on a series of coordinated neuromuscular patterns, not just on The medulla, pons, and midbrain compose the brain- muscle strength. The neural circuitry in the brain, spinal cord, stem. The medulla, located immediately above the spinal and periphery functions somewhat similar to a sophisticated cord, extends into the pons and serves as a bridge between computer network.
    [Show full text]
  • Malak Shalfawi Noor Adnan Lina Abdelhadi Fasial Mohammad
    9 Noor Adnan Malak Shalfawi Lina abdelhadi Fasial Mohammad 0 Motor system – Motor of the spinal cord Before we start talking about the motor function of the spinal cord, let’s first take a quick look at the motor system and the incredible connections taking place inside it: [please refer to the pictures for better understanding] 1- Motor command For any motor function (movement) to occur, the nervous system has motor command that comes from the cerebral motor cortex to the spinal cord and these descending tracts (corticospinal) are called also pyramidal tracts and that’s because they pass through the pyramids of medulla oblongata. The neuronal fibers coming from the cortex ending in the spinal cord are considered upper motor neurons, while the neuronal fibers going out from the spinal cord to reach the muscles are called lower motor neurons. There are other origins for the motor commands such as the brain stem and the red nucleus that send neuronal fibers to the spinal cord in order to control the activity of the muscles. 2- Motor command intension At the same time, there are some tracts going from the cortex to the cerebellum through the brain stem like the corticopontocerebellar, corticoreticulocerebellar, corticolivarycerebellar tracts. And these tracts are telling the cerebellum about the intended movements. (= the movements we want to do) 3-motor command monitor/ feedback system a- Inside the muscles we have receptors (muscle spindles/ stretch receptors, Golgi tendon organs) that are connected to sensory (afferent) neuronal fibers that goes to the spinal cord relay nuclei. 1 | P a g e b- From the spinal cord they go to the cerebellum through ventral and dorsal spinocerebellar tracts to tell the cerebellum what is exactly happening down at the level of the muscles.
    [Show full text]
  • The Role of the Spinal Cord Is Secondary to That of the Brain
    Unit VII – Problem 7 – Physiology: Motor Functions of The Spinal Cord; The Cord Reflexes - The role of the spinal cord is secondary to that of the brain. - Circuits exist in the spinal cord, however, that process sensory information and are capable of generating complex motor activity. - Organization of the spinal cord for motor functions: Anterior (ventral) horn motor neurons: Present at levels of the spinal cord. Innervate skeletal striated muscles. Note that a motor neuron and all the muscle fibers it innervates are referred to collectively as a (motor unit). There are two types of motor neurons in the ventral horn: Alpha motor neurons: myelinated axons, 14 micrometers in diameter, high conduction velocity. Gamma motor neurons: 5 micrometers in diameter, low conduction velocity. Interneuron: They are 30 times more numerous than motor neurons. Highly excitable. Spontaneous firing rates as high as 1500/sec. They receive the bulk of synaptic input that reaches the spinal cord, as either incoming sensory information or as signals descending from higher centers in the brain. Renshaw cell: a type of interneuron. It receives input from collateral branches of motor neuron axons and then, via its own axonal system, provides inhibitory connections with the same or neighboring motor neurons. - Muscle sensory receptors (muscle spindles and Golgi tendon organs) and their roles in muscle control: Receptor function of the muscle spindle: The sensory feedback from muscles include: Current length of the muscle. The length value is derived from a muscle spindle. Current tension in the muscle. Tension is signaled by a Golgi tendon organ. Muscle spindle: 3-10 mm in length.
    [Show full text]
  • Kinetics and Muscle Modeling of a Single Degree of Freedom Joint Part II: Spindles and Sensory Neurons
    Tech Brief: Joint II Kinetics and Muscle Modeling of a Single Degree of Freedom Joint Part II: Spindles and Sensory Neurons Rick Wells Aug. 13, 2003 I. The Hill Model for Intrafusal Fiber The second part of this tech brief deals with modeling the intrafusal muscle fibers and the sensory neurons. We begin with the mechanical model of the intrafusal muscle fibers. From the “Muscles” tech brief we recall that intrafusal fibers are too weak to play any mechanical role in the force exerted by a muscle. Instead their role has been described as that of a “sophisticated strain gauge.” Figure 1, taken from Matthews1, is an illustration of a muscle spindle. A muscle spindle contains two major components: the bag and/or chain fibers, which are innervated by axons from gamma motoneurons and contain contractile elements; and the receptor tissues in which are intertwined nerve ends from the primary (group Ia) or secondary (group II) sensory neurons. Spindle fibers are generally a few mm in length, with large ones sometimes exceeding 10 mm, and they are attached to in parallel to the extrafusal fibers. They are thus subject to the same stretch (or contraction) as the whole muscle. The portion of the spindle containing the receptor makes up about one to two tenths of the total resting length of the spindle. A more detailed look at the receptor structure is illustrated in Figure 2. Bag fibers (whose receptors are primary sensors, i.e. group Ia) and chain fibers (whose receptors are both primary and secondary sensors, i.e. group II) are arranged in parallel with each other.
    [Show full text]
  • Motor System 1: Spinal Cord
    10353-11_CH11.qxd 8/30/07 1:16 PM Page 238 11 Motor System 1: Spinal Cord LEARNING OBJECTIVES This cortical control provides a type of parallel process- ing with rostral domination of hierarchical motor organiza- After studying this chapter, students should be able to: tion and simultaneous control of the segmental output itself. Because some time is involved in the conduction of afferent • Discuss the anatomy of the spinal cord information, local (spinal) reflexes often are activated first, • Describe the functions of the spinal structures and motor mechanisms at higher hierarchic levels are acti- vated slightly later. The best example of reflexive move- • Discuss the importance of the motor unit in movement ment is mistakenly stepping on a tack with your bare foot. • List the major ascending and descending spinal tracts This triggers a leg-withdrawal reflex, which is already in progress before the forebrain can inhibit or modify the • Describe the functions of the major sensorimotor tracts action. However, the higher motor systems can inhibit • Explain the role of muscle spindles in reflexive motor such a withdrawal reflex if the stimulus is expected and functions another response has been learned. For example, if some- one has to pick up a hot cup, the withdrawal reflex can be • Discuss the importance of the Golgi tendon organ inhibited while the hot cup is being moved to a support- • Describe the physiology of basic spinal reflexes ing surface, even though the fingers are being burned. The hierarchically defined motor functions and the • Explain the importance of the lower motor neurons nature of the specific contributions by each level are dis- • Discuss lower motor neuron syndrome cussed in Chapters 11–14.
    [Show full text]