Neural Control of Human Movement

Total Page:16

File Type:pdf, Size:1020Kb

Neural Control of Human Movement 97818_ch19.qxd 8/4/09 4:16 PM Page 376 CHAPTER 19 Neural Control of Human Movement CHAPTER OBJECTIVES ➤ Draw the major structural components of the ➤ Outline motor unit facilitation and inhibition and brain, including the four lobes of the cerebral the contribution of each to exercise performance cortex and responsiveness to resistance training ➤ Discuss specific pyramidal and extrapyramidal ➤ Discuss variations in twitch characteristics, resist- tract functions ance to fatigue, and tension development in the different motor unit categories ➤ Diagram the anterior motor neuron and discuss its role in human movement ➤ Describe mechanisms that adjust force of muscle action along the continuum from slight to ➤ Draw and label the basic components of a maximum reflex arc ➤ Define fatigue and discuss factors that act and ➤ Define the terms (1) motor unit, (2) neuromuscular interact to induce neuromuscular fatigue junction, and (3) autonomic nervous system ➤ List and describe functions of the proprioceptors ➤ Summarize the events in motor unit excitation within joints, muscles, and tendons prior to muscle action 376 97818_ch19.qxd 8/4/09 4:16 PM Page 377 CHAPTER 19 Neural Control of Human Movement 377 The effective application of force during complex learned Brainstem movements (e.g., tennis serve, shot put, golf swing) depends on a series of coordinated neuromuscular patterns, not just on The medulla, pons, and midbrain compose the brain- muscle strength. The neural circuitry in the brain, spinal cord, stem. The medulla, located immediately above the spinal and periphery functions somewhat similar to a sophisticated cord, extends into the pons and serves as a bridge between computer network. In response to changing internal and ex- the two hemispheres of the cerebellum. The midbrain, only ternal stimuli, hundreds of millions of bits of sensory input 1.5 cm long, attaches to the cerebellum and forms a connec- automatically synchronize for near-instantaneous processing tion between the pons and cerebral hemispheres. The mid- by central neural control mechanisms. The input becomes brain contains parts of the extrapyramidal motor system, properly organized, routed, and transmitted with extreme effi- specifically the red nucleus and substantia. The reticular ciency to the effector organs, the skeletal muscles.27 formation integrates various incoming and outgoing signals that flow through it. These signals originate from the stretching of sensors in joints and muscles, from pain recep- NEUROMOTOR SYSTEM tors in the skin, and as visual signals from the eye and audi- ORGANIZATION tory impulses from the ear. Once activated, the reticular system produces either inhibitory or facilitory effects on The human nervous system consists of two major parts: other neurons. Twelve pairs of cranial nerves innervate pre- 1. Central nervous system (CNS) consisting of the dominantly the head region. Each cranial nerve has a name brain and spinal cord and associated number (originally derived by Galen about 2. Peripheral nervous system (PNS) consisting of 1800 years ago). nerves that transmit information to and from the CNS Cerebellum FIGURE 19.1 presents an overview of these two subdivisions. The cerebellum consists of two peach-sized mounds of folded tissue with lateral hemispheres and a central vermis. It Central Nervous System—The Brain functions by means of intricate feedback circuits to monitor Over time the human brain has remained remarkably com- and coordinate other areas of the brain and spinal cord plex, but with selective growth of different anatomic areas. involved in motor control. The cerebellum receives motor From a comparative perspective, the size of the human brain output signals from the central command in the cortex. This exceeds that of most (but not all) mammals. Evolution of the specialized brain tissue also obtains sensory information cortex, particularly the frontal and temporal lobes, coincides from peripheral receptors in muscles, tendons, joints, and skin with unique human functions like spoken and written lan- and from visual, auditory, and vestibular end organs. The guage, reasoning, and abstract thinking. Such differentiation cerebellum functions as the major comparing, evaluating, frames the hypothesis that larger, more complex brains allow and integrating center for postural adjustments, locomotion, greater neural circuitry within the cortex and hence increased maintenance of equilibrium, perceptions of speed of body intellectual and higher center functioning. movement, and other diverse reflex-related movement func- For decades, conventional wisdom maintained that the tions. Movement tasks first learned by trial and error, like number of brain cells was fixed at birth, unlike the cells of other riding a bicycle or swinging a golf club, remain coded as organ systems that continually renew themselves throughout coordinated patterns in the cerebellar memory banks. In life. Neurobiologists now believe that brain cells, spinal neu- essence, this motor control center “fine-tunes” all forms of 29 rons, and neural circuits are created throughout life, with elimi- muscular activity. nation of unneeded or redundant synapses in developing neural tissues. From birth through late adolescence, the brain probably Diencephalon adds billions of new cells, literally constructing new circuits from these newly formed cells.14 After adolescence, the plastic- The diencephalon, located immediately above the ity of neuronal addition and formation of new circuits slows but midbrain, forms part of the cerebral hemispheres. The does not stop, even into old age. Regular physical activity thalamus, hypothalamus, epithalamus, and subthalamus appears to contribute to the development and maintenance of compose the major structures of the diencephalon. The optimal neural circuitry in middle and older age. hypothalamus, situated below the thalamus, regulates FIGURE 19.2 categorizes the brain into six main areas: metabolic rate and body temperature. The hypothalamus medulla oblongata, pons, midbrain, cerebellum, dien- also influences activity of the autonomic nervous system cephalon, and telencephalon. Figure 19.2C depicts four (see p. 382); it receives regulatory input from the thalamus lobes of the cerebral cortex and associated sensory areas. As a and limbic brain system and responds to the effects of di- frame of reference, the body has roughly 10 million sensory verse hormones (see Chapter 20). Changes in arterial blood (afferent) neurons, 50 billion central neurons, and 500,000 pressure and blood gas tensions influence hypothalamic ac- motor (efferent) neurons. This represents a ratio of about 20 tivity via peripheral receptors located in the aortic arch and to 1 between the sensory and motor circuits. carotid arteries. 97818_ch19.qxd 8/4/09 4:16 PM Page 378 Peripheral Central Nervous Nervous Brain System System So ma ti c se n Skin s o ry f Spinal cord ib er Visceral s ens ory fiber Cardio- fiber tor vascular mo ic thet r fiber Sympa oto m Vertebral tic he column pat Parasym ic at m so f o Muscle er m ib te Spinal nerve r f s to sy Mo us nervo Nervous System Central Nervous System (CNS) Peripheral Nervous System (PNS) • Brain (including retinas) • Cranial nerves III—XII • Spinal cord • Spinal nerves • Integrative/control centers Afferent Division (sensory) Efferent Division (motor) • Somatic and visceral neurons • Motor neurons • Conducts impulses from • Conducts impulses from the receptors to CNS CNS to effectors Autonomic Nervous System Somatic Nervous System • Involuntary • Voluntary • Conducts impulses from the CNS • Conducts impulses from the CNS to cardiac muscle, smooth to skeletal muscles muscles, and glands Sympathetic Parasympathetic Figure 19.1 • The two divisions of the human nervous system. The central nervous system (CNS) contains the brain (including retinas), spinal cord, and integrating and control centers; the cranial nerves and spinal nerves compose the peripheral nervous system (PNS). The PNS further subdivides into the afferent (sensory) and efferent (motor) divisions. The efferent division consists of the somatic nervous system and autonomic nervous system (sympathetic and parasympathetic divisions). 97818_ch19.qxd 8/4/09 4:16 PM Page 379 CHAPTER 19 Neural Control of Human Movement 379 Telencephalon Telencephalon Diencephalon The telencephalon contains the two hemispheres of the Thalamus cerebral cortex, including the corpus striatum and medulla. Epithalamus The cerebral cortex makes up approximately 40% of the total brain weight. It divides into four lobes: frontal, temporal, parietal, and occipital. Neurons in the cortex provide special- ized sensory and motor functions. Beneath each cerebral hemisphere and in close association with the thalamus lie the basal ganglia, which play an important role in the control of motor movements. Midbrain Brain Limbic System Pons stem Cerebellum In 1878, French surgeon, neurologist, and anthropologist Medulla oblongata A Paul Pierre Broca (1824–1880) described a group of areas on Spinal cord the medial surface of the cerebrum that were distinctly differ- ent from the surrounding cortex. Using the Latin word for Longitudinal fissure “border” (limbus), Broca named the area the limbic lobe be- cause its structures formed a ring or border around the brain- stem and corpus callosum on the medial surface of the temporal lobe.3 Broca also discovered the speech center now known as Broca’s area, or the third circumvolution of the Motor frontal lobe. Broca should be credited as the founder of mod-
Recommended publications
  • Interpretation of Sensory Information from Skeletal Muscle Receptors for External Control Milan Djilas
    Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control Milan Djilas To cite this version: Milan Djilas. Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control. Automatic. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00333530 HAL Id: tel-00333530 https://tel.archives-ouvertes.fr/tel-00333530 Submitted on 23 Oct 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC T H E S E pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Formation doctorale: SYSTEMES AUTOMATIQUES ET MICROELECTRONIQUES Ecole Doctorale: INFORMATION, STRUCTURES ET SYSTEMES présentée et soutenue publiquement par Milan DJILAS le 13 octobre 2008 Titre: INTERPRETATION DES INFORMATIONS SENSORIELLES DES RECEPTEURS DU MUSCLE SQUELETTIQUE POUR LE CONTROLE EXTERNE INTERPRETATION OF SENSORY INFORMATION FROM SKELETAL MUSCLE RECEPTORS FOR EXTERNAL CONTROL JURY Jacques LEVY VEHEL Directeur de Recherches, INRIA Rapporteur
    [Show full text]
  • Part I Biopharmaceuticals
    1 Part I Biopharmaceuticals Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Analogs and Antagonists of Male Sex Hormones Robert W. Brueggemeier The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, Ohio 43210, USA 1Introduction6 2 Historical 6 3 Endogenous Male Sex Hormones 7 3.1 Occurrence and Physiological Roles 7 3.2 Biosynthesis 8 3.3 Absorption and Distribution 12 3.4 Metabolism 13 3.4.1 Reductive Metabolism 14 3.4.2 Oxidative Metabolism 17 3.5 Mechanism of Action 19 4 Synthetic Androgens 24 4.1 Current Drugs on the Market 24 4.2 Therapeutic Uses and Bioassays 25 4.3 Structure–Activity Relationships for Steroidal Androgens 26 4.3.1 Early Modifications 26 4.3.2 Methylated Derivatives 26 4.3.3 Ester Derivatives 27 4.3.4 Halo Derivatives 27 4.3.5 Other Androgen Derivatives 28 4.3.6 Summary of Structure–Activity Relationships of Steroidal Androgens 28 4.4 Nonsteroidal Androgens, Selective Androgen Receptor Modulators (SARMs) 30 4.5 Absorption, Distribution, and Metabolism 31 4.6 Toxicities 32 Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Analogs and Antagonists of Male Sex Hormones 5 Anabolic Agents 32 5.1 Current Drugs on the Market 32 5.2 Therapeutic Uses and Bioassays
    [Show full text]
  • A Neural Network Framework for Cognitive Bias
    fpsyg-09-01561 August 31, 2018 Time: 17:34 # 1 HYPOTHESIS AND THEORY published: 03 September 2018 doi: 10.3389/fpsyg.2018.01561 A Neural Network Framework for Cognitive Bias Johan E. Korteling*, Anne-Marie Brouwer and Alexander Toet* TNO Human Factors, Soesterberg, Netherlands Human decision-making shows systematic simplifications and deviations from the tenets of rationality (‘heuristics’) that may lead to suboptimal decisional outcomes (‘cognitive biases’). There are currently three prevailing theoretical perspectives on the origin of heuristics and cognitive biases: a cognitive-psychological, an ecological and an evolutionary perspective. However, these perspectives are mainly descriptive and none of them provides an overall explanatory framework for the underlying mechanisms of cognitive biases. To enhance our understanding of cognitive heuristics and biases we propose a neural network framework for cognitive biases, which explains why our brain systematically tends to default to heuristic (‘Type 1’) decision making. We argue that many cognitive biases arise from intrinsic brain mechanisms that are fundamental for the working of biological neural networks. To substantiate our viewpoint, Edited by: we discern and explain four basic neural network principles: (1) Association, (2) Eldad Yechiam, Technion – Israel Institute Compatibility, (3) Retainment, and (4) Focus. These principles are inherent to (all) neural of Technology, Israel networks which were originally optimized to perform concrete biological, perceptual, Reviewed by: and motor functions. They form the basis for our inclinations to associate and combine Amos Schurr, (unrelated) information, to prioritize information that is compatible with our present Ben-Gurion University of the Negev, Israel state (such as knowledge, opinions, and expectations), to retain given information Edward J.
    [Show full text]
  • Neural Control and Neuromodulationof Lower Urinary
    Neural Control and Neuromodulation of Lower Urinary Tract Function William C. de Groat University of Pittsburgh Topics • Anatomy and functions of the lower urinary tract • Peripheral innervation (efferent and afferent nerves) • Central neural control of the lower urinary tract • Lower urinary tract dysfunction • Treatment of dysfunction (neuromodulation) • Research opportunities Anatomy and Functions of the Lower Urinary Tract Functions Two Types of Voiding 1. Urine storage - Reservoir: Bladder INVOLUNTARY (Reflex) (infant & fetus) Defect in 2. Urine release Maturation Maturation - Outlet: Urethra INVOLUNTARY THERAPY VOLUNTARY (Reflex) (adult) (adult) Bladder Parkinson’s, MS, stroke, brain tumors, spinal cord injury, Urethra aging, cystitis Lower Urinary Tract Innervation Two Types of Visceral Afferent Neurons: Bladder & Bowel Aδ-fibers responsible for normal bladder sensations C-fibers contribute to urgency, frequency and incontinence Afferent Sensitivity may be Influenced by Substances Released from the Urothelium Aδ fiber C fiber X CNS Urothelium The Bladder U rothelium Glycosaminoglycan Layer Uroplakin Plaques and Discoidal Vesicles r=_zo_"_"l_a_o_cc-lu---.dens } Umbrella Cell Stratum Intermediate Cell Stratum } Basal Cell Stratum Afferent Nerve fiber Urothelial-Afferent Interactions ( I ( I ( I ( ' ( I ( I ( I Urothelium ( I ( 0 I I I AChR ATP, NO, NKA, ACh, NGF ~erves ' Efferent ' nerves nerves Interaction of Sensory Pathways of Multiple Pelvic Organs Convergent Dichotomizing Branch Bladder point Colon Somatic and Visceral Afferent
    [Show full text]
  • Injury Establishes Constitutive Μ-Opioid Receptor Activity Leading to Lasting Endogenous Analgesia and Dependence
    University of Kentucky UKnowledge Theses and Dissertations--Physiology Physiology 2013 INJURY ESTABLISHES CONSTITUTIVE µ-OPIOID RECEPTOR ACTIVITY LEADING TO LASTING ENDOGENOUS ANALGESIA AND DEPENDENCE Gregory F. Corder University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Corder, Gregory F., "INJURY ESTABLISHES CONSTITUTIVE µ-OPIOID RECEPTOR ACTIVITY LEADING TO LASTING ENDOGENOUS ANALGESIA AND DEPENDENCE" (2013). Theses and Dissertations--Physiology. 10. https://uknowledge.uky.edu/physiology_etds/10 This Doctoral Dissertation is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physiology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.
    [Show full text]
  • 196296475.Pdf
    SCIENCE ADVANCES | RESEARCH ARTICLE ENGINEERING Copyright © 2018 The Authors, some rights reserved; Stretchable organic optoelectronic exclusive licensee American Association sensorimotor synapse for the Advancement Yeongjun Lee1,2,3*, Jin Young Oh3,4*, Wentao Xu1,5,6, Onnuri Kim7, Taeho Roy Kim8, of Science. No claim to 3 9 3 3 7 original U.S. Government Jiheong Kang , Yeongin Kim , Donghee Son , Jeffery B.-H. Tok , Moon Jeong Park , Works. Distributed 3† 1,2,10† Zhenan Bao , Tae-Woo Lee under a Creative Commons Attribution Emulation of human sensory and motor functions becomes a core technology in bioinspired electronics for next- NonCommercial generation electronic prosthetics and neurologically inspired robotics. An electronic synapse functionalized with License 4.0 (CC BY-NC). an artificial sensory receptor and an artificial motor unit can be a fundamental element of bioinspired soft elec- tronics. Here, we report an organic optoelectronic sensorimotor synapse that uses an organic optoelectronic synapse and a neuromuscular system based on a stretchable organic nanowire synaptic transistor (s-ONWST). The voltage pulses of a self-powered photodetector triggered by optical signals drive the s-ONWST, and resultant informative synaptic outputs are used not only for optical wireless communication of human-machine interfaces but also for light-interactive actuation of an artificial muscle actuator in the same way that a biological muscle fiber contracts. Downloaded from Our organic optoelectronic sensorimotor synapse suggests a promising strategy toward developing bioinspired soft electronics, neurologically inspired robotics, and electronic prostheses. INTRODUCTION Light cognition is an important sensory function for bioinspired Our human body performs not only myriads of sensing functions electronics (12–15), for example, an artificial visualization system.
    [Show full text]
  • A New Highly Specific and Robust Yeast Androgen Bioassay for the Detection of Agonists and Antagonists
    Anal Bioanal Chem (2007) 389:1549–1558 DOI 10.1007/s00216-007-1559-6 ORIGINAL PAPER A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists Toine F. H. Bovee & Richard J. R. Helsdingen & Astrid R. M. Hamers & Majorie B. M. van Duursen & Michel W. F. Nielen & Ron L. A. P. Hoogenboom Received: 27 April 2007 /Revised: 3 July 2007 /Accepted: 15 August 2007 / Published online: 12 September 2007 # Springer-Verlag 2007 Abstract Public concern about the presence of natural and very specific and also suited to detect compounds that have anthropogenic compounds which affect human health by an antiandrogenic mode of action. modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods Keywords Antagonists . Brominated flame retardants . for the detection of hormone activities are thus indispens- Crosstalk . Metabolism . Receptor . Saccharomyces able. During the last two decades, a panel of different in vitro cerevisiae assays has been developed, mainly for compounds with an estrogenic mode of action. Here we describe the develop- ment of an androgen transcription activation assay that is Introduction easy to use in routine screening. Recombinant yeast cells were constructed that express the human androgen receptor There is concern that chemicals in our food, water, and and yeast enhanced green fluorescent protein (yEGFP), the environment affect human health by disrupting normal latter in response to androgens. Compared with other endocrine function, possibly leading to reproductive failure reporters, the yEGFP reporter protein is very convenient in humans and tumors in sensitive tissues [1, 2]. This because it is directly measurable in intact living cells, i.e., relates to chemicals with previously unknown hormonal cell wall disruption and the addition of a substrate are not properties, like certain pesticides and plasticizers, but also needed.
    [Show full text]
  • Steroids and Other Appearance and Performance Enhancing Drugs (Apeds) Research Report
    Research Report Revised Febrero 2018 Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Table of Contents Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Introduction What are the different types of APEDs? What is the history of anabolic steroid use? Who uses anabolic steroids? Why are anabolic steroids misused? How are anabolic steroids used? What are the side effects of anabolic steroid misuse? How does anabolic steroid misuse affect behavior? What are the risks of anabolic steroid use in teens? How do anabolic steroids work in the brain? Are anabolic steroids addictive? How are anabolic steroids tested in athletes? What can be done to prevent steroid misuse? What treatments are effective for anabolic steroid misuse? Where can I get further information about steroids? References Page 1 Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Esta publicación está disponible para su uso y puede ser reproducida, en su totalidad, sin pedir autorización al NIDA. Se agradece la citación de la fuente, de la siguiente manera: Fuente: Instituto Nacional sobre el Abuso de Drogas; Institutos Nacionales de la Salud; Departamento de Salud y Servicios Humanos de los Estados Unidos. Introduction Appearance and performance enhancing drugs (APEDs) are most often used by males to improve appearance by building muscle mass or to enhance athletic performance. Although they may directly and indirectly have effects on a user’s mood, they do not produce a euphoric high, which makes APEDs distinct from other drugs such as cocaine, heroin, and marijuana. However, users may develop a substance use disorder, defined as continued use despite adverse consequences.
    [Show full text]
  • Biodegradation of the Steroid Progesterone in Surface Waters
    Biodegradation of the Steroid Progesterone in Surface Waters A Thesis Submitted for the Degree of Doctor of Philosophy By Jasper Oreva Ojoghoro Institute of the Environment, Health and Societies May, 2017 Abstract Many studies measuring the occurrence of pharmaceuticals, understanding their environmental fate and the risk they pose to surface water resources have been published. However, very little is known about the relevant transformation products which result from the wide range of biotic and abiotic degradation processes that these compounds undergo in sewers, storage tanks, during engineered treatment and in the environment. Thus, the present study primarily investigated the degradation of the steroid progesterone (P4) in natural systems (rivers), with a focus on the identification and characterisation of transformation products. Initial work focussed on assessing the removal of selected compounds (Diclofenac, Fluoxetine, Propranolol and P4) from reed beds, with identification of transformation products in a field site being attempted. However, it was determined that concentrations of parent compounds and products would be too low to work with in the field, and a laboratory study was designed which focussed on P4. Focus on P4 was based on literature evidence of its rapid biodegradability relative to the other model compounds and its usage patterns globally. River water sampling for the laboratory-based degradation study was carried out at 1 km downstream of four south east England sewage works (Blackbirds, Chesham, High Wycombe and Maple Lodge) effluent discharge points. Suspected P4 transformation products were initially identified from predictions by the EAWAG Biocatalysis Biodegradation Database (EAWAG BBD) and from a literature review. At a later stage of the present work, a replacement model for EAWAG BBD (enviPath) which became available, was used to predict P4 degradation and results were compared.
    [Show full text]
  • Analytical Reference Standards
    Cerilliant Quality ISO GUIDE 34 ISO/IEC 17025 ISO 90 01:2 00 8 GM P/ GL P Analytical Reference Standards 2 011 Analytical Reference Standards 20 811 PALOMA DRIVE, SUITE A, ROUND ROCK, TEXAS 78665, USA 11 PHONE 800/848-7837 | 512/238-9974 | FAX 800/654-1458 | 512/238-9129 | www.cerilliant.com company overview about cerilliant Cerilliant is an ISO Guide 34 and ISO 17025 accredited company dedicated to producing and providing high quality Certified Reference Standards and Certified Spiking SolutionsTM. We serve a diverse group of customers including private and public laboratories, research institutes, instrument manufacturers and pharmaceutical concerns – organizations that require materials of the highest quality, whether they’re conducing clinical or forensic testing, environmental analysis, pharmaceutical research, or developing new testing equipment. But we do more than just conduct science on their behalf. We make science smarter. Our team of experts includes numerous PhDs and advance-degreed specialists in science, manufacturing, and quality control, all of whom have a passion for the work they do, thrive in our collaborative atmosphere which values innovative thinking, and approach each day committed to delivering products and service second to none. At Cerilliant, we believe good chemistry is more than just a process in the lab. It’s also about creating partnerships that anticipate the needs of our clients and provide the catalyst for their success. to place an order or for customer service WEBSITE: www.cerilliant.com E-MAIL: [email protected] PHONE (8 A.M.–5 P.M. CT): 800/848-7837 | 512/238-9974 FAX: 800/654-1458 | 512/238-9129 ADDRESS: 811 PALOMA DRIVE, SUITE A ROUND ROCK, TEXAS 78665, USA © 2010 Cerilliant Corporation.
    [Show full text]
  • WO 2012/148570 Al 1 November 2012 (01.11.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/148570 Al 1 November 2012 (01.11.2012) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61L 27/14 (2006.01) A61P 17/02 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, C08L 101/16 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, PCT/US20 12/027464 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 2 March 2012 (02.03.2012) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 13/093,479 25 April 201 1 (25.04.201 1) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant (for all designated States except US): DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, WARSAW ORTHOPEDIC, INC.
    [Show full text]
  • Avaliação Do Teste De Micronúcleo Em Linfócitos Para Uso Como Biomarcador De Risco De Câncer Em Usuários De Esteroides Anabolizantes Androgênicos
    UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA LEONARDO DA CUNHA MENEZES SOUZA AVALIAÇÃO DO TESTE DE MICRONÚCLEO EM LINFÓCITOS PARA USO COMO BIOMARCADOR DE RISCO DE CÂNCER EM USUÁRIOS DE ESTEROIDES ANABOLIZANTES ANDROGÊNICOS Feira de Santana, BA 2013 LEONARDO DA CUNHA MENEZES SOUZA AVALIAÇÃO DO TESTE DE MICRONÚCLEO EM LINFÓCITOS PARA USO COMO BIOMARCADOR DO RISCO DE CÂNCER EM USUÁRIOS DE ESTEROIDES ANABOLIZANTES ANDROGÊNICOS Dissertação apresentada ao Programa de Pós-graduação em Biotecnologia, da Universidade Estadual de Feira de Santana como requisito parcial para obtenção do título de Mestre em Biotecnologia. Orientadora: Profa. Dr. Eneida de Moraes Marcílio Cerqueira Feira de Santana, BA 2013 Aos meus pais com carinho AGRADECIMENTOS A Deus pela serenidade e coragem em momentos adversos; Ao meu pai e à minha mãe, por proporcionarem sempre um ambiente fértil ao aprendizado e à gentileza; À profa Eneida de Moraes Marcílio Cerqueira pela orientação segura, disponibilidade incondicional, e pelo carinho durante todos estes anos; À Maíza Alves Lopes pela grande ajuda e agradável companhia durante o desenvolvimento do trabalho, tornando menos árdua à empreitada; Ao professor José Roberto Cardoso Meireles pelos ensinamentos preciosos e grande ajuda ao longo de toda minha formação; À Luciara Alves da Cruz, pela disponibilidade para com as coletas, sem a qual este trabalho não seria possível; À Daisy Maria Favero Salvadori, à Luciana Maria Feliciano e à equipe da UNESP de Botucatu por terem me recebido tão
    [Show full text]