Draft Genome Sequence of Microdochium Bolleyi, a Dark Septate Fungal Endophyte of Beach Grass
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic and Pathogenic Differences Between Microdochium Nivale and Microdochium Majus
Genetic and Pathogenic Differences Between Microdochium nivale and Microdochium majus by Linda Elizabeth Jewell A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Science Guelph, Ontario, Canada © Linda Elizabeth Jewell, December, 2013 ABSTRACT GENETIC AND PATHOGENIC DIFFERENCES BETWEEN MICRODOCHIUM NIVALE AND MICRODOCHIUM MAJUS Linda Elizabeth Jewell Advisor: University of Guelph, 2013 Professor Tom Hsiang Microdochium nivale and M. majus are fungal plant pathogens that cause cool-temperature diseases on grasses and cereals. Nucleotide sequences of four genetic regions were compared between isolates of M. nivale and M. majus from Triticum aestivum (wheat) collected in North America and Europe and for isolates of M. nivale from turfgrasses from both continents. Draft genome sequences were assembled for two isolates of M. majus and two of M. nivale from wheat and one from turfgrass. Dendograms constructed from these data resolved isolates of M. majus into separate clades by geographic origin. Among M. nivale, isolates were instead resolved by host plant species. Amplification of repetitive regions of DNA from M. nivale isolates collected from two proximate locations across three years grouped isolates by year, rather than by location. The mating-type (MAT1) and associated flanking genes of Microdochium were identified using the genome sequencing data to investigate the potential for these pathogens to produce ascospores. In all of the Microdochium genomes, and in all isolates assessed by PCR, only the MAT1-2-1 gene was identified. However, unpaired, single-conidium-derived colonies of M. majus produced fertile perithecia in the lab. -
Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions
Activated Resistance of Bentgrass Cultivars to Microdochium nivale under Predicted Climate Change Conditions by Sara Marie Stricker A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Environmental Science Guelph, Ontario, Canada © Sara Marie Stricker, September, 2017 ABSTRACT ACTIVATED RESISTANCE OF BENTGRASS CULTIVARS TO MICRODOCHIUM NIVALE UNDER PREDICTED CLIMATE CHANGE CONDITIONS Sara Marie Stricker Advisor: University of Guelph, 2017 Professor Dr. Tom Hsiang The potential impact of predicted climate change on Microdochium nivale, which causes Microdochium patch on turfgrasses was investigated. Turfgrasses exposed to temperature fluctuations exhibited increased yellowing caused by M. nivale compared to a constant lower temperature incubation. The effect of increased CO2 (from 400 ppm to 800 ppm) on M. nivale hyphal growth, percent yellowing, and biochemical response was assessed for Agrostis spp. and Poa annua cultivars. The efficacy of the resistance activator, Civitas + Harmonizer, was assessed under conditions of increased CO2, two temperatures, and field conditions. Civitas + Harmonizer often decreased disease symptoms, and suppression varied by cultivar and environmental conditions. Elevated CO2 did not affect the growth of M. nivale, although evidence from growth room trials suggests it may decrease Microdochium patch disease severity in the future. However, the interactive effects of temperature, snow cover conditions, and moisture availability in the field under future conditions is unknown. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Dr. Tom Hsiang for welcoming me back into his lab and for his guidance, patience, and wry witticisms that kept me going. I am also very grateful for the opportunities I have had to participate in conferences and educational experiences throughout my time as a master’s student. -
Microdochium Nivale in Perennial Grasses: Snow Mould Resistance, Pathogenicity and Genetic Diversity
Philosophiae Doctor (PhD), Thesis 2016:32 (PhD), Doctor Philosophiae ISBN: 978-82-575-1324-5 Norwegian University of Life Sciences ISSN: 1894-6402 Faculty of Veterinary Medicine and Biosciences Department of Plant Sciences Philosophiae Doctor (PhD) Thesis 2016:32 Mohamed Abdelhalim Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet Postboks 5003 Mohamed Abdelhalim NO-1432 Ås, Norway +47 67 23 00 00 www.nmbu.no Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity. Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet. Philosophiae Doctor (PhD) Thesis Mohamed Abdelhalim Department of Plant Sciences Faculty of Veterinary Medicine and Biosciences Norwegian University of Life Sciences Ås (2016) Thesis number 2016:32 ISSN 1894-6402 ISBN 978-82-575-1324-5 Supervisors: Professor Anne Marte Tronsmo Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Professor Odd Arne Rognli Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Adjunct Professor May Bente Brurberg Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Researcher Dr. Ingerd Skow Hofgaard The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Dr. Petter Marum Graminor AS. Bjørke forsøksgård, Hommelstadvegen 60 NO-2344 Ilseng, Norway Associate Professor Åshild Ergon Department of Plant Sciences, Norwegian University of Life Sciences P.O. -
{Replace with the Title of Your Dissertation}
Mechanisms of Invasion and the Microbiome of Introduced Species A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Aaron S. David IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Eric Seabloom Georgiana May May 2016 © Aaron S. David 2016 Acknowledgements I have been fortunate to have had incredible guidance, mentorship, and assistance throughout my time as a Ph.D. student at the University of Minnesota. I would like to start by acknowledging and thanking my advisors, Dr. Eric Seabloom and Dr. Georgiana May for providing crucial support, and always engaging me in stimulating discussion. I also thank my committee members, Dr. Peter Kennedy, Dr. Linda Kinkel, and Dr. David Tilman for their guidance and expertise. I am indebted to Dr. Sally Hacker and Dr. Joey Spatafora of Oregon State University for generously welcoming me into their laboratories while I conducted my field work. Dr. Phoebe Zarnetske and Shawn Gerrity showed me the ropes out on the dunes and provided valuable insight along the way. I also have to thank the many undergraduate students who helped me in the field in laboratory. In particular, I need to thank Derek Schmidt, who traveled to Oregon with me and helped make my field work successful. I also thank my other collaborators that made this work possible, especially Dr. Peter Ruggiero and Reuben Biel who contributed to the data collection and analysis in Chapter 1, and Dr. Gina Quiram and Jennie Sirota who contributed to the study design and data collection in Chapter 4. I would also like to thank the amazing faculty, staff, and students of Ecology, Evolution, and Behavior and neighboring departments. -
What If Esca Disease of Grapevine Were Not a Fungal Disease?
Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot. -
Microbial Factors Associated with the Natural Suppression of Take-All In
Title Page Microbial factors associated with the natural suppression of take-all in wheat in New Zealand A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy At Lincoln University, Canterbury, New Zealand by Soon Fang Chng Lincoln University 2009 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Abstract Microbial factors associated with the natural suppression of take- all in wheat in New Zealand by Soon Fang Chng Take-all, caused by the soilborne fungus, Gaeumannomyces graminis var. tritici (Ggt), is an important root disease of wheat that can be reduced by take-all decline (TAD) in successive wheat crops, due to general and/or specific suppression. A study of 112 New Zealand wheat soils in 2003 had shown that Ggt DNA concentrations (analysed using real-time PCR) increased with successive years of wheat crops (1-3 y) and generally reflected take-all severity in subsequent crops. However, some wheat soils with high Ggt DNA concentrations had low take-all, suggesting presence of TAD. This study investigated 26 such soils for presence of TAD and possible suppressive mechanisms, and characterised the microorganisms from wheat roots and rhizosphere using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A preliminary pot trial of 29 soils (including three from ryegrass fields) amended with 12.5% w/w Ggt inoculum, screened their suppressiveness against take-all in a growth chamber. Results indicated that the inoculum level was too high to detect the differences between soils and that the environmental conditions used were unsuitable. -
Endophytes in Maize (Zea Mays) in New Zealand
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Endophytes in Maize (Zea mays) in New Zealand A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science at Lincoln University by Jennifer Joy Brookes Lincoln University 2017 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science. Abstract Endophytes in Maize (Zea mays) in New Zealand by Jennifer Joy Brookes The aim of this study was to isolate fungal endophytes from maize in New Zealand (NZ) and to select endophytes with potential to reduce insect pests and/or plant diseases. Culture methods were used to isolate 322 isolates of fungi belonging to four phyla from maize (Zea mays L.) plants. Plants were sampled over two growing seasons (2014 and 2015) in two regions of NZ. Morphological and molecular (ITS rDNA sequencing) techniques were used to identify the fungi. The most common genera recovered were Fusarium, followed by Alternaria, Trichoderma, Epicoccum, Mucor, Penicillium and Cladosoprium spp. Of the Acomycota isolates, 33 genera from 6 classes were recovered. -
Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus Repens
Journal of Fungi Article Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus repens Anna K. Høyer and Trevor R. Hodkinson * Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin D2, Ireland; [email protected] * Correspondence: [email protected] Abstract: The root endophyte community of the grass species Elymus repens was investigated using both a culture-dependent approach and a direct amplicon sequencing method across five sites and from individual plants. There was much heterogeneity across the five sites and among individual plants. Focusing on one site, 349 OTUs were identified by direct amplicon sequencing but only 66 OTUs were cultured. The two approaches shared ten OTUs and the majority of cultured endo- phytes do not overlap with the amplicon dataset. Media influenced the cultured species richness and without the inclusion of 2% MEA and full-strength MEA, approximately half of the unique OTUs would not have been isolated using only PDA. Combining both culture-dependent and -independent methods for the most accurate determination of root fungal species richness is therefore recom- mended. High inter-plant variation in fungal species richness was demonstrated, which highlights the need to rethink the scale at which we describe endophyte communities. Citation: Høyer, A.K.; Hodkinson, T.R. Hidden Fungi: Combining Culture-Dependent and -Independent Keywords: DNA barcoding; Elymus repens; fungal root endophytes; high-throughput amplicon DNA Barcoding Reveals Inter-Plant sequencing; MEA; PDA Variation in Species Richness of Endophytic Root Fungi in Elymus repens. J. Fungi 2021, 7, 466. -
Microbiological Insights Into Ecology and Taphonomy of Prehistoric Wetlands
Microbiological insights into ecology and taphonomy of prehistoric wetlands. By © 2018 Ashley A Klymiuk M.Sc. Systematics & Evolution, University of Alberta, 2011 B.Sc. Paleontology, University of Alberta, 2009 Submitted to the graduate degree program in Ecology & Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Benjamin Sikes Mark Holder Ari Jumpponen Leonard Krishtalka Jennifer Roberts Date Defended: 04 December 2018 ii The dissertation committee for Ashley A Klymiuk certifies that this is the approved version of the following dissertation: Microbiological insights into ecology and taphonomy of prehistoric wetlands. Chair: Benjamin Sikes Date Approved: 7 December 2018 iii Abstract In the course of this dissertation, I present investigations of the microbial constituents of fossil plants preserved at an anatomical level of detail, and detail the results of an ecological survey of root-endogenous fungi within the cosmopolitan emergent macrophyte, Typha. These studies together elucidate processes in the taphonomy of fossil plants. Biostratinomy is addressed through descriptions of saprotrophic communities within the Eocene Princeton Chert mire assemblage, and within a Carboniferous fern which previous studies had suggested contained fossilized actinobacteria. Re-investigation of the ‘actinobacteria’ suggests instead that the structures are disordered ferrous dolomites, raising implications for the contribution of sulfate- reducing bacteria to the early-diagenesis mineralization of plants preserved in carbonaceous concretions. The fossilized remains of saprotrophic and putatively endophytic fungi within roots of in-situ plants from the Princeton Chert also provide insight into early diagenesis. Some of the fungi described herein are preserved in several co-occurring developmental phases, providing evidence that early phases of silicification in this assemblage were rapid. -
Xylariales, Ascomycota), Designation of an Epitype for the Type Species of Iodosphaeria, I
VOLUME 8 DECEMBER 2021 Fungal Systematics and Evolution PAGES 49–64 doi.org/10.3114/fuse.2021.08.05 Phylogenetic placement of Iodosphaeriaceae (Xylariales, Ascomycota), designation of an epitype for the type species of Iodosphaeria, I. phyllophila, and description of I. foliicola sp. nov. A.N. Miller1*, M. Réblová2 1Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL, USA 2Czech Academy of Sciences, Institute of Botany, 252 43 Průhonice, Czech Republic *Corresponding author: [email protected] Key words: Abstract: The Iodosphaeriaceae is represented by the single genus, Iodosphaeria, which is composed of nine species with 1 new taxon superficial, black, globose ascomata covered with long, flexuous, brown hairs projecting from the ascomata in a stellate epitypification fashion, unitunicate asci with an amyloid apical ring or ring lacking and ellipsoidal, ellipsoidal-fusiform or allantoid, hyaline, phylogeny aseptate ascospores. Members of Iodosphaeria are infrequently found worldwide as saprobes on various hosts and a wide systematics range of substrates. Only three species have been sequenced and included in phylogenetic analyses, but the type species, taxonomy I. phyllophila, lacks sequence data. In order to stabilize the placement of the genus and family, an epitype for the type species was designated after obtaining ITS sequence data and conducting maximum likelihood and Bayesian phylogenetic analyses. Iodosphaeria foliicola occurring on overwintered Alnus sp. leaves is described as new. Five species in the genus form a well-supported monophyletic group, sister to thePseudosporidesmiaceae in the Xylariales. Selenosporella-like and/or ceratosporium-like synasexual morphs were experimentally verified or found associated with ascomata of seven of the nine accepted species in the genus. -
First Report of Six Sordariomycetes Fungi Isolated from Plant Litter in Freshwater Ecosystems of Korea
The Korean Journal of Mycology www.kjmycology.or.kr RESEARCH ARTICLE First report of six Sordariomycetes fungi isolated from plant litter in freshwater ecosystems of Korea * Jaeduk Goh , Hye Yeon Mun, Yu-Jeong Jeon, Namil Chung, Young-Hwan Park, Sangkyu Park, Hyejin Hwang and Wonsu Cheon Fungi Research Team, Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea * Corresponding author: [email protected] ABSTRACT Freshwater ecosystems provide a complex environment for microorganisms. In this study, we isolated diverse fungal strains from plant litter in freshwaters. These strains were identified using molecular phylogenetic analyses of rDNA and/or other gene sequences (TUB, GAPDH, and EF1). In addition, we examined their morphological characteristics by microscopy and cultural characteristics on several media. We identified six previously unrecorded Sordariomycetes species in Korea, i.e., Colletotrichum godetiae, Discosia rubi, Robillarda sessilis, Monochaetia dimorphospora, Idriella lunata, and Phialemoniopsis endophytica. Of these, D. rubi and M. dimorphospora exhibited high extracellular amylase, lipase, and protease activities, suggesting that these fungal isolates might play an important role as decomposers in freshwater ecosystems. Plant litter could thus be a good source for isolating and investigating previously undocumented fungal species in freshwater environments. Keywords: Freshwater, Plant litter, Sordariomycetes OPEN ACCESS pISSN : 0253-651X eISSN : 2383-5249 Kor. J. Mycol. 2020 June, 48(2): 103-116 INTRODUCTION https://doi.org/10.4489/KJM.20200012 Freshwater ecosystems encompass several habitat types, providing a diverse environment for microorganisms. Plant litter, such as fallen leaves and decaying wood, are typical habitats for several freshwater fungi. Freshwater fungi, which represent a poly-phylogenetic group, are taxonomically diverse Received: April 13, 2020 Revised: June 13, 2020 organisms colonizing the substrate in aquatic or semi-aquatic environments [1-2]. -
Rye Snow Mold-Associated Microdochium Nivale Strains Inhabiting a Common Area: Variability in Genetics, Morphotype, Extracellular Enzymatic Activities, and Virulence
Journal of Fungi Article Rye Snow Mold-Associated Microdochium nivale Strains Inhabiting a Common Area: Variability in Genetics, Morphotype, Extracellular Enzymatic Activities, and Virulence Vladimir Gorshkov 1,*, Elena Osipova 1, Mira Ponomareva 1, Sergey Ponomarev 1, Natalia Gogoleva 1, Olga Petrova 1, Olga Gogoleva 1, Azat Meshcherov 1, Alexander Balkin 1, Elena Vetchinkina 2, Kim Potapov 1, Yuri Gogolev 1 and Viktor Korzun 1,3 1 Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; [email protected] (E.O.); [email protected] (M.P.); [email protected] (S.P.); [email protected] (N.G.); [email protected] (O.P.); [email protected] (O.G.); [email protected] (A.M.); [email protected] (A.B.); [email protected] (K.P.); [email protected] (Y.G.); [email protected] (V.K.) 2 Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, 410049 Saratov, Russia; [email protected] 3 KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany * Correspondence: [email protected] or [email protected] Received: 13 November 2020; Accepted: 30 November 2020; Published: 3 December 2020 Abstract: Snow mold is a severe plant disease caused by psychrophilic or psychrotolerant fungi, of which Microdochium species are the most harmful. A clear understanding of Microdochium biology has many gaps; the pathocomplex and its dynamic are poorly characterized, virulence factors are unknown, genome sequences are not available, and the criteria of plant snow mold resistance are not elucidated.