Endophytes in Maize (Zea Mays) in New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Endophytes in Maize (Zea Mays) in New Zealand Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Endophytes in Maize (Zea mays) in New Zealand A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science at Lincoln University by Jennifer Joy Brookes Lincoln University 2017 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science. Abstract Endophytes in Maize (Zea mays) in New Zealand by Jennifer Joy Brookes The aim of this study was to isolate fungal endophytes from maize in New Zealand (NZ) and to select endophytes with potential to reduce insect pests and/or plant diseases. Culture methods were used to isolate 322 isolates of fungi belonging to four phyla from maize (Zea mays L.) plants. Plants were sampled over two growing seasons (2014 and 2015) in two regions of NZ. Morphological and molecular (ITS rDNA sequencing) techniques were used to identify the fungi. The most common genera recovered were Fusarium, followed by Alternaria, Trichoderma, Epicoccum, Mucor, Penicillium and Cladosoprium spp. Of the Acomycota isolates, 33 genera from 6 classes were recovered. Basidiomyctes were represented by two classes and Zycomycota by one class and a superphylum, Heterokonta, was represented with one class. To determine fungi with potential as biocontrol agents, several assay approaches were taken. Initially, most fungi were used to challenge a plant pathogen on media plates in dual culture experiments. This allowed selection of 21 promising isolates which were inoculated into maize plants by seed coating, then used in plant disease assay and a caterpillar feeding challenge assay. A final eight isolates were selected as the most promising for conferring beneficial traits on plants: Sordaria fimicola, Mucor racemosus, Mucor fragilis, Trichoderma atroviride, Penicillium brasilianum, Fusarium equiseti, Fusarium acuminatum and Fusarium proliferatum. These isolates have shown potential as BCAs against disease and/or insects in laboratory assays. Keywords: Endophytes, BCA, maize, fungi, screening, bioassay, dual culture, in planta, Setosphaeria turcica, Helicoverpa armigera, Beauveria, Fusarium, Trichoderma, Alternaria, Mucor, Epicoccum ii Acknowledgements I want to extend a very big thank you to my supervisors, Prof. T Glare and Dr. M. Rostas, and to Dave Saville, who provided all the statisticial assistance. A big thank you to my children, Charles, Scott and Robert, and my parents, Ron and Philippa Rivers, for their patience through my course work and thesis. Many thanks to my friends and co-workers for their support and encouragement through my Masters at the Bio-Protection Research Centre (BPRC), Lincoln University. A big thank you to my office mate, Josefina Narciso for her support and shoulder and in the latter part, Jin-Hua Li for her assistance in the lab. To everyone else at the BPRC a big thank you so much for your help during the last four years I have being doing my Masters part time. Its done!!! This has been an incredible steep learning curve, one which I have thoroughly enjoyed. I hope to continue and be able to add to this knowledge. iii Table of Contents Abstract .................................................................................................................................. ii Acknowledgements ................................................................................................................ iii Table of Contents ................................................................................................................... iv List of Tables .......................................................................................................................... vi List of Figures .........................................................................................................................vii Chapter 1 Introduction ............................................................................................................ 1 1.1 Maize in agriculture ................................................................................................................. 1 1.2 Important pathogens affecting maize in NZ ............................................................................ 2 1.3 Insect pests of NZ maize .......................................................................................................... 5 1.4 Endophytes .............................................................................................................................. 8 1.4.1 Maize endophytes .................................................................................................... 10 1.4.2 Endophytes and disease ........................................................................................... 12 1.4.3 Endophytes and insects ............................................................................................ 13 1.5 Research objectives ............................................................................................................... 13 Chapter 2 General methods ................................................................................................... 15 2.1 Introduction ........................................................................................................................... 15 2.2 Sampling field collected maize plants for endophytes .......................................................... 15 2.2.1 Recovery of putative endophytes from maize ......................................................... 15 2.2.2 Surface sterilisation of maize tissues ........................................................................ 17 2.2.3 Media ........................................................................................................................ 19 2.2.4 Identification of recovered fungi from PDA ............................................................. 20 2.2.5 DNA extraction ......................................................................................................... 21 2.2.6 Polymerase chain reaction ....................................................................................... 21 2.2.7 DNA analysis ............................................................................................................. 22 2.3 In vitro bioassay of recovered putative endophytes against a plant pathogenic fungus ..... 22 2.4 In planta maize challenge methods ....................................................................................... 24 2.4.1 Seed coating ............................................................................................................. 24 2.4.2 Plant disease assay ................................................................................................... 24 2.4.3 Application of pathogen S. turcica. .......................................................................... 26 2.5 Development of an insect bioassay ....................................................................................... 28 2.6 Presence of putative endophytes in seed ............................................................................. 29 2.6.1 Surface sterilising of seeds ....................................................................................... 29 Chapter 3 Results .................................................................................................................. 30 3.1 Isolation of fungi from surface sterilised maize .................................................................... 30 3.1.1 Microscopy results .................................................................................................... 31 3.1 1 Difficult isolate identifications ...................................................................................... 37 3.2 Dual culture results ............................................................................................................... 39 3.3 In planta ................................................................................................................................. 42 3.4 Insect bioassays ..................................................................................................................... 48 3.5 Endophyte recovery from plants ........................................................................................... 54 iv Chapter 4 Discussion ............................................................................................................. 56 4.1 Main findings ......................................................................................................................... 56 4.2 Maize screening ..................................................................................................................... 56 4.3 Culture methods .................................................................................................................... 58 4.4 Detection of endophyte in plant tissue ................................................................................. 59 4.5 Colonisation
Recommended publications
  • Chapter 11 Marine Fungi Associated with Antarctic Macroalgae
    Chapter 11 Marine Fungi Associated with Antarctic Macroalgae Mayara B. Ogaki, Maria T. de Paula, Daniele Ruas, Franciane M. Pellizzari, César X. García-Laviña, and Luiz H. Rosa Abstract Fungi are well known for their important roles in terrestrial ecosystems, but filamentous and yeast forms are also active components of microbial communi- ties from marine ecosystems. Marine fungi are particularly abundant and relevant in coastal systems where they can be found in association with large organic substrata, like seaweeds. Antarctica is a rather unexplored region of the planet that is being influenced by strong and rapid climate change. In the past decade, several efforts have been made to get a thorough inventory of marine fungi from different environ- ments, with a particular emphasis on those associated with the large communities of seaweeds that abound in littoral and infralittoral ecosystems. The algicolous fungal communities obtained were characterized by a few dominant species and a large number of singletons, as well as a balance among endemic, indigenous, and cold-­ adapted cosmopolitan species. The long-term monitoring of this balance and the dynamics of richness, dominance, and distributional patterns of these algicolous fungal communities is proposed to understand and model the influence of climate change on the maritime Antarctic biota. In addition, several fungal isolates from marine Antarctic environments have shown great potential as producers of bioactive natural products and enzymes and may represent attractive sources of biotechno- logical products. M. B. Ogaki · M. T. de Paula · D. Ruas · L. H. Rosa (*) Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil e-mail: [email protected] F.
    [Show full text]
  • Swim Bladder Mycosis in Farmed Rainbow Trout Oncorhynchus Mykiss Caused by Phoma Herbarum and Experimental Verification of Pathogenicity
    Vol. 138: 237–246, 2020 DISEASES OF AQUATIC ORGANISMS Published online April 9 https://doi.org/10.3354/dao03464 Dis Aquat Org Swim bladder mycosis in farmed rainbow trout Oncorhynchus mykiss caused by Phoma herbarum and experimental verification of pathogenicity Jirˇí Rˇ ehulka1, Alena Kubátová2, Vit Hubka2,3,* 1Department of Zoology, Silesian Museum, 746 01 Opava, Czech Republic 2Department of Botany, Faculty of Science, Charles University, 128 01 Prague 2, Czech Republic 3Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., 142 20 Prague 4, Czech Republic ABSTRACT: In this study, spontaneous swim bladder mycosis was documented in a farmed finger- ling rainbow trout from a raceway culture system. At necropsy, the gross lesions included a thick- ened swim bladder wall, and the posterior portion of the swim bladder was enlarged due to mas- sive hyperplasia of muscle. A microscopic wet mount examination of the swim bladder contents revealed abundant septate hyphae, and histopathological examination showed periodic acid- Schiff-positive mycelia in the lumen and wall of the swim bladder. Histopathological examination of the thickened posterior swim bladder revealed muscle hyperplasia with expansion by inflam- matory cells. The causative agent was identified as Phoma herbarum through morphological an - alysis and DNA sequencing. The disease was reproduced in rainbow trout fingerlings using intra - peritoneal injection of a spore suspension. Necropsy in dead and moribund fish revealed ex tensive congestion and haemorrhages in the serosa of visceral organs and in liver and abdominal serosan- guinous fluid. Histopathological examination showed severe hepatic congestion, sinusoidal dilata- tion, Kupffer cell reactivity, leukostasis and degenerative changes.
    [Show full text]
  • Diversity and Toxigenicity of Fungi That Cause Pineapple Fruitlet Core Rot
    toxins Article Diversity and Toxigenicity of Fungi that Cause Pineapple Fruitlet Core Rot Bastien Barral 1,2,* , Marc Chillet 1,2, Anna Doizy 3 , Maeva Grassi 1, Laetitia Ragot 1, Mathieu Léchaudel 1,4, Noel Durand 1,5, Lindy Joy Rose 6 , Altus Viljoen 6 and Sabine Schorr-Galindo 1 1 Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; [email protected] (M.C.); [email protected] (M.G.); [email protected] (L.R.); [email protected] (M.L.); [email protected] (N.D.); [email protected] (S.S.-G.) 2 CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Reunion, France 3 CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Reunion, France; [email protected] 4 CIRAD, UMR Qualisud, F-97130 Capesterre-Belle-Eau, Guadeloupe, France 5 CIRAD, UMR Qualisud, F-34398 Montpellier, France 6 Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa; [email protected] (L.J.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +262-2-62-49-27-88 Received: 14 April 2020; Accepted: 14 May 2020; Published: 21 May 2020 Abstract: The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces.
    [Show full text]
  • Sugarcane Wilt: New Insights Into Pathogen Identity, Variability and Pathogenicity
    ® Functional Plant Science and Biotechnology ©2012 Global Science Books Sugarcane Wilt: New Insights into Pathogen Identity, Variability and Pathogenicity Rasappa Viswanathan* • Muthusamy Poongothai • Palaniyandi Malathi • Amalraj R. Sundar Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore 641007, India Corresponding author : * [email protected] ABSTRACT Wilt of sugarcane, a fungal disease is known to cause significant damage to sugarcane production and productivity in India and other countries for the past one century. Although sugarcane wilt is known in India for a long time, research work on this important disease is totally lacking. The causal organism was found to vary with time and investigator and could not reproduce the disease under artificial conditions in the field. We have made detailed disease surveys in 13 major sugarcane growing states in the country and 263 Fusarium isolates were isolated. We have established the variation in Fusarium isolates associated with sugarcane wilt, based on cultural, morphological, pathogenic and molecular characterization of 117 isolates. Critical observations in the conventional techniques combined with molecular biological approaches clearly established that Fusarium sacchari as the causal agent of the disease. Other Fusarium sp isolated from wilt infected sugarcane stalks were found to be either secondary invaders or non-pathogenic in nature. We have developed an artificial simulation technique to induce wilt in sugarcane under field conditions and
    [Show full text]
  • Field Fungal Diversity in Freshly Harvested Japonica Rice
    1 Field fungal diversity in freshly harvested japonica rice 2 3 4 5 ABSTRACT 6 Rice is a major food crop in China and Japonica rice production in Heilongjiang 7 Province ranks No.1 in total annual rice production in the country. Rice is prone to 8 invasion by fungi and mycotoxins produced by the fungi are proven to be serious 9 threats to human health. The objective of the present study was to investigate fungal 10 diversity of freshly harvested rice in the four main cultivation regions of Heilongjiang 11 Province in order to find the abundance difference of dominant fungi among the four 12 regions. Through high throughput sequencing we detected Ascomycota accounts for 13 absolute dominant phylum; Dothideomycetes, Sordariomycetes, Tremellomycetes, 14 Microbotryomycetes, and Eurotiomycetes were dominant classes; Capnodiales, 15 Hypocreales, and Pleosporales were the main orders; Cladosporiaceae, Pleosporaceae, 16 Nectriaceae, Clavicipitaceae, Tremellaceae, Phaeosphaeriaceae, 17 Trimorphomycetaceae, Sporidiobolaceae, Bionectriaceae, and Trichocomaceae were 18 major family; Cladosporium, Epicoccum, Fusarium, and Alternaria were the most 19 abundant phylotypes at genus level; Epicoccum_nigrum, Gibberella_zeae, and 20 Fusarium_proliferatum were the dominant fungal species. Great fungal diversity was 21 observed in the rice samples harvested in the four major Japonica rice-growing regions 22 in Heilongjiang province. However, no significant difference in diversity was observed 23 among the four regions, likely due to the relatively close geographical proximity 24 leading to very similar climatic conditions. Since some of the fungal species produce 25 mycotoxins, it is necessary to take precautions to ensure the rice is stored under safe 26 conditions to prevent the production of mycotoxins.
    [Show full text]
  • Universidade Estadual Do Maranhão Programa De Pós-Graduação Em Agroecologia Curso De Mestrado Em Agroecologia
    UNIVERSIDADE ESTADUAL DO MARANHÃO PROGRAMA DE PÓS-GRADUAÇÃO EM AGROECOLOGIA CURSO DE MESTRADO EM AGROECOLOGIA LEONARDO DE JESUS MACHADO GOIS DE OLIVEIRA ORGANIZAÇÃO, CONSERVAÇÃO E INFORMATIZAÇÃO DA MICOTECA “PROF.° GILSON SOARES DA SILVA” DA UNIVERSIDADE ESTADUAL DO MARANHÃO. São Luís – MA 2016 LEONARDO DE JESUS MACHADO GOIS DE OLIVEIRA Engenheiro Agrônomo ORGANIZAÇÃO, CONSERVAÇÃO E INFORMATIZAÇÃO DA MICOTECA “PROF.° GILSON SOARES DA SILVA” DA UNIVERSIDADE ESTADUAL DO MARANHÃO. Dissertação apresentada ao Programa de Pós-Graduação em Agroecologia da Universidade Estadual do Maranhão, como requisito parcial à obtenção do grau de Mestre em Agroecologia. Orientador(a): Prof.ª Dr.ª Antonia Alice Costa Rodrigues São Luís – MA 2016 ii LEONARDO DE JESUS MACHADO GOIS DE OLIVEIRA Dissertação apresentada ao Programa de Pós-Graduação em Agroecologia da Universidade Estadual do Maranhão, como requisito parcial à obtenção do grau de Mestre em Agroecologia. Orientador: Prof. Dr.ª Antonia Alice Costa Rodrigues. Aprovada em: 07 / 10 / 2016 Comissão Julgadora: ____________________________________________________ Profa. Dr.ª Antonia Alice Costa Rodrigues - Universidade Estadual do Maranhão (Orientadora) ________________________________________________ Prof. Dr. Gilson Soares da Silva - Universidade Estadual do Maranhão ____________________________________________________ Profa. Dr.ª Maria Claudene Barros - Universidade Estadual do Maranhão São Luís 2016 iii Ao Senhor Deus, alicerce de minhas atitudes aqui na Terra, Aos meus pais, Iris e Manoel pelo amor e esforço a mim dedicados, Aos meus irmãos Leonam, Débora e Diego e as irmãs de coração Bruna e Adriana. DEDICO! iv AGRADECIMENTOS Á Deus, por ter me guiado e removido todos os obstáculos do meu caminho. Á Profª Dra. Antonia Alice Costa Rodrigues, pelos ensinamentos, incentivos e amizade, nesse processo tão importante da minha vida que foi o Mestrado.
    [Show full text]
  • 2019 Growing Season 2019 Rapport De Recherches Sur La Lutte Dirigée
    i 2019 Pest Management Research Report (PMRR) 2019 Growing Season 2019 Rapport de recherches sur la lutte dirigée (RRLD) pour la saison 2019 ii English 2019 PEST MANAGEMENT RESEARCH REPORT Prepared by: Pest Management Centre, Agriculture and Agri-Food Canada 960 Carling Avenue, Building 57, Ottawa ON K1A 0C6, Canada The Official Title of the Report 2019 Pest Management Research Report - 2019 Growing Season: Compiled by Agriculture and Agri- Food Canada, 960 Carling Avenue, Building 57, Ottawa ON K1A 0C6, Canada. April, 2020.Volume 581. 69 pp. 23 reports. Published on the Internet at: http://phytopath.ca/publication/pmrr/ 1 This is the 20th year that the Report has been issued a volume number. It is based on the number of years that it has been published. See history on page iii. This annual report is designed to encourage and facilitate the rapid dissemination of pest management research results, particularly of field trials, amongst researchers, the pest management industry, university and government agencies, and others concerned with the development, registration and use of effective pest management strategies. The use of alternative and integrated pest management products is seen by the ECIPM as an integral part in the formulation of sound pest management strategies. If in doubt about the registration status of a particular product, consult the Pest Management Regulatory Agency, Health Canada, at 1-800-267-6315. This year there were 23 reports. Agriculture and Agri-Food Canada is indebted to the researchers from provincial and federal departments, universities, and industry who submitted reports, for without their involvement there would be no report.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Draft Pest Categorisation of Organisms Associated with Washed Ware Potatoes (Solanum Tuberosum) Imported from Other Australian States and Territories
    Nucleorhabdovirus Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories This page is intentionally left blank Contributing authors Bennington JMA Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Shan F Research Officer – Biosecurity and Regulation, Plant Biosecurity Wood CE Technical Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2016 Document citation DAFWA 2016, Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2016 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever
    [Show full text]
  • Genetic and Pathogenic Differences Between Microdochium Nivale and Microdochium Majus
    Genetic and Pathogenic Differences Between Microdochium nivale and Microdochium majus by Linda Elizabeth Jewell A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Science Guelph, Ontario, Canada © Linda Elizabeth Jewell, December, 2013 ABSTRACT GENETIC AND PATHOGENIC DIFFERENCES BETWEEN MICRODOCHIUM NIVALE AND MICRODOCHIUM MAJUS Linda Elizabeth Jewell Advisor: University of Guelph, 2013 Professor Tom Hsiang Microdochium nivale and M. majus are fungal plant pathogens that cause cool-temperature diseases on grasses and cereals. Nucleotide sequences of four genetic regions were compared between isolates of M. nivale and M. majus from Triticum aestivum (wheat) collected in North America and Europe and for isolates of M. nivale from turfgrasses from both continents. Draft genome sequences were assembled for two isolates of M. majus and two of M. nivale from wheat and one from turfgrass. Dendograms constructed from these data resolved isolates of M. majus into separate clades by geographic origin. Among M. nivale, isolates were instead resolved by host plant species. Amplification of repetitive regions of DNA from M. nivale isolates collected from two proximate locations across three years grouped isolates by year, rather than by location. The mating-type (MAT1) and associated flanking genes of Microdochium were identified using the genome sequencing data to investigate the potential for these pathogens to produce ascospores. In all of the Microdochium genomes, and in all isolates assessed by PCR, only the MAT1-2-1 gene was identified. However, unpaired, single-conidium-derived colonies of M. majus produced fertile perithecia in the lab.
    [Show full text]
  • Aphid Species (Hemiptera: Aphididae) Infesting Medicinal and Aromatic Plants in the Poonch Division of Azad Jammu and Kashmir, Pakistan
    Amin et al., The Journal of Animal & Plant Sciences, 27(4): 2017, Page:The J.1377 Anim.-1385 Plant Sci. 27(4):2017 ISSN: 1018-7081 APHID SPECIES (HEMIPTERA: APHIDIDAE) INFESTING MEDICINAL AND AROMATIC PLANTS IN THE POONCH DIVISION OF AZAD JAMMU AND KASHMIR, PAKISTAN M. Amin1, K. Mahmood1 and I. Bodlah 2 1 Faculty of Agriculture, Department of Entomology, University of Poonch, 12350 Rawalakot, Azad Jammu and Kashmir, Pakistan 2Department of Entomology, PMAS-Arid Agriculture University, 46000 Rawalpindi, Pakistan Corresponding Author Email: [email protected] ABSTRACT This study conducted during 2015-2016 presents first systematic account of the aphids infesting therapeutic herbs used to cure human and veterinary ailments in the Poonch Division of Azad Jammu and Kashmir, Pakistan. In total 20 aphid species, representing 12 genera, were found infesting 35 medicinal and aromatic plant species under 31 genera encompassing 19 families. Aphis gossypii with 17 host plant species was the most polyphagous species followed by Myzus persicae and Aphis fabae that infested 15 and 12 host plant species respectively. Twenty-two host plant species had multiple aphid species infestation. Sonchus asper was infested by eight aphid species and was followed by Tagetes minuta, Galinosoga perviflora and Chenopodium album that were infested by 7, 6 and 5 aphid species respectively. Asteraceae with 11 host plant species under 10 genera, carrying 13 aphid species under 8 genera was the most aphid- prone plant family. A preliminary systematic checklist of studied aphids and list of host plant species are provided. Key words: Aphids, Medicinal/Aromatic plants, checklist, Poonch, Kashmir, Pakistan.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]