Evidence of Microdochium Fungi Associated with Cereal Grains in Russia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity and Toxigenicity of Fungi That Cause Pineapple Fruitlet Core Rot
toxins Article Diversity and Toxigenicity of Fungi that Cause Pineapple Fruitlet Core Rot Bastien Barral 1,2,* , Marc Chillet 1,2, Anna Doizy 3 , Maeva Grassi 1, Laetitia Ragot 1, Mathieu Léchaudel 1,4, Noel Durand 1,5, Lindy Joy Rose 6 , Altus Viljoen 6 and Sabine Schorr-Galindo 1 1 Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; [email protected] (M.C.); [email protected] (M.G.); [email protected] (L.R.); [email protected] (M.L.); [email protected] (N.D.); [email protected] (S.S.-G.) 2 CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Reunion, France 3 CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Reunion, France; [email protected] 4 CIRAD, UMR Qualisud, F-97130 Capesterre-Belle-Eau, Guadeloupe, France 5 CIRAD, UMR Qualisud, F-34398 Montpellier, France 6 Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa; [email protected] (L.J.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +262-2-62-49-27-88 Received: 14 April 2020; Accepted: 14 May 2020; Published: 21 May 2020 Abstract: The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces. -
Genetic and Pathogenic Differences Between Microdochium Nivale and Microdochium Majus
Genetic and Pathogenic Differences Between Microdochium nivale and Microdochium majus by Linda Elizabeth Jewell A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Science Guelph, Ontario, Canada © Linda Elizabeth Jewell, December, 2013 ABSTRACT GENETIC AND PATHOGENIC DIFFERENCES BETWEEN MICRODOCHIUM NIVALE AND MICRODOCHIUM MAJUS Linda Elizabeth Jewell Advisor: University of Guelph, 2013 Professor Tom Hsiang Microdochium nivale and M. majus are fungal plant pathogens that cause cool-temperature diseases on grasses and cereals. Nucleotide sequences of four genetic regions were compared between isolates of M. nivale and M. majus from Triticum aestivum (wheat) collected in North America and Europe and for isolates of M. nivale from turfgrasses from both continents. Draft genome sequences were assembled for two isolates of M. majus and two of M. nivale from wheat and one from turfgrass. Dendograms constructed from these data resolved isolates of M. majus into separate clades by geographic origin. Among M. nivale, isolates were instead resolved by host plant species. Amplification of repetitive regions of DNA from M. nivale isolates collected from two proximate locations across three years grouped isolates by year, rather than by location. The mating-type (MAT1) and associated flanking genes of Microdochium were identified using the genome sequencing data to investigate the potential for these pathogens to produce ascospores. In all of the Microdochium genomes, and in all isolates assessed by PCR, only the MAT1-2-1 gene was identified. However, unpaired, single-conidium-derived colonies of M. majus produced fertile perithecia in the lab. -
The Emergence of Cereal Fungal Diseases and the Incidence of Leaf Spot Diseases in Finland
AGRICULTURAL AND FOOD SCIENCE AGRICULTURAL AND FOOD SCIENCE Vol. 20 (2011): 62–73. Vol. 20(2011): 62–73. The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Marja Jalli, Pauliina Laitinen and Satu Latvala MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland, email: [email protected] Fungal plant pathogens causing cereal diseases in Finland have been studied by a literature survey, and a field survey of cereal leaf spot diseases conducted in 2009. Fifty-seven cereal fungal diseases have been identified in Finland. The first available references on different cereal fungal pathogens were published in 1868 and the most recent reports are on the emergence of Ramularia collo-cygni and Fusarium langsethiae in 2001. The incidence of cereal leaf spot diseases has increased during the last 40 years. Based on the field survey done in 2009 in Finland, Pyrenophora teres was present in 86%, Cochliobolus sativus in 90% and Rhynchosporium secalis in 52% of the investigated barley fields.Mycosphaerella graminicola was identi- fied for the first time in Finnish spring wheat fields, being present in 6% of the studied fields.Stagonospora nodorum was present in 98% and Pyrenophora tritici-repentis in 94% of spring wheat fields. Oat fields had the fewest fungal diseases. Pyrenophora chaetomioides was present in 63% and Cochliobolus sativus in 25% of the oat fields studied. Key-words: Plant disease, leaf spot disease, emergence, cereal, barley, wheat, oat Introduction nbrock and McDonald 2009). Changes in cropping systems and in climate are likely to maintain the plant-pathogen interactions (Gregory et al. -
Fusarium Langsethiae on Kernels of Winter Wheat in Poland – Occurrence and Mycotoxigenic Abilities
3rd Int. FHB Symposium Szeged, Hungary, 2008 FUSARIUM LANGSETHIAE ON KERNELS OF WINTER WHEAT IN POLAND – OCCURRENCE AND MYCOTOXIGENIC ABILITIES Aleksander LUKANOWSKI – Czeslaw SADOWSKI Department of Phytopathology, University of Technology and Life Sciences, Ks. A. Kordeckiego 20, 85-225 Bydgoszcz, Poland, e-mail: [email protected] Abstract: The object of the study was mycological analysis of settlement of winter wheat grain samples collected in 2005/2006 and 2006/2007 cropping seasons with the special respect to a new species – Fusarium langsethiae. Its presence was noted in 38 samples in relatively low intensity (from 0.5 up to 3.5%). PCR assay confirmed identity of 38 isolates as F. langsethiae. Mycelium of tested strains of F. langsethiae was whitish with powdery appearance. Microconidia were formed napiform or globose, nonseptate, formed in heads. Macroconidia, sclerotia, and chlamydospores were not present after 3 weeks of incubation. Growth rates ranged from 5.4 to 10.3 mm/day. No isolate had potential ability to type B trichothecenes. Detailed chemical analyses of two strains showed them as producers of T-2 and HT-2 toxins at high concentrations. Key words: Fusarium langsethiae, PCR, wheat, mycotoxins Introduction Fungi from genus Fusarium, one of the most dangerous pathogens of cereals, cause serious loses of yield and significantly decrease its quality and wheat shows relatively high susceptibility to infection by these fungi. During research on mycotoxins and the occurrence of Fusarium spp. in cereal grain in Norway (Kosiak et al. 1997; Langseth and Rundberget 1999), it was found a Fusarium species of uncertain identity morphologically resembling F. -
Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions
Activated Resistance of Bentgrass Cultivars to Microdochium nivale under Predicted Climate Change Conditions by Sara Marie Stricker A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Environmental Science Guelph, Ontario, Canada © Sara Marie Stricker, September, 2017 ABSTRACT ACTIVATED RESISTANCE OF BENTGRASS CULTIVARS TO MICRODOCHIUM NIVALE UNDER PREDICTED CLIMATE CHANGE CONDITIONS Sara Marie Stricker Advisor: University of Guelph, 2017 Professor Dr. Tom Hsiang The potential impact of predicted climate change on Microdochium nivale, which causes Microdochium patch on turfgrasses was investigated. Turfgrasses exposed to temperature fluctuations exhibited increased yellowing caused by M. nivale compared to a constant lower temperature incubation. The effect of increased CO2 (from 400 ppm to 800 ppm) on M. nivale hyphal growth, percent yellowing, and biochemical response was assessed for Agrostis spp. and Poa annua cultivars. The efficacy of the resistance activator, Civitas + Harmonizer, was assessed under conditions of increased CO2, two temperatures, and field conditions. Civitas + Harmonizer often decreased disease symptoms, and suppression varied by cultivar and environmental conditions. Elevated CO2 did not affect the growth of M. nivale, although evidence from growth room trials suggests it may decrease Microdochium patch disease severity in the future. However, the interactive effects of temperature, snow cover conditions, and moisture availability in the field under future conditions is unknown. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Dr. Tom Hsiang for welcoming me back into his lab and for his guidance, patience, and wry witticisms that kept me going. I am also very grateful for the opportunities I have had to participate in conferences and educational experiences throughout my time as a master’s student. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and Related Genera with Cylindrocarpon-Like Anamorphs
available online at www.studiesinmycology.org StudieS in Mycology 68: 57–78. 2011. doi:10.3114/sim.2011.68.03 Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs P. Chaverri1*, C. Salgado1, Y. Hirooka1, 2, A.Y. Rossman2 and G.J. Samuels2 1University of Maryland, Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Rm. 240, B-010A, 10300 Beltsville Avenue, Beltsville, Maryland 20705, USA *Correspondence: Priscila Chaverri, [email protected] Abstract: Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genusCylindrocarpon . Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectria sensu stricto and Cylindrocarpon sensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarpon sensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectria sensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N. -
Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions
toxins Review Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions Lakshmipriya Perincherry , Justyna Lalak-Ka ´nczugowska and Łukasz St˛epie´n* Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy´nska34, 60-479 Pozna´n,Poland; [email protected] (L.P.); [email protected] (J.L.-K.) * Correspondence: [email protected] Received: 29 October 2019; Accepted: 12 November 2019; Published: 14 November 2019 Abstract: Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection. Keywords: fungal pathogens; Fusarium; pathogenicity; secondary metabolites Key Contribution: The review summarized the knowledge and recent reports on the involvement of Fusarium mycotoxins in plant infection processes, as well as the consequences for plant metabolism and physiological changes related to the pathogenesis. -
Microdochium Nivale in Perennial Grasses: Snow Mould Resistance, Pathogenicity and Genetic Diversity
Philosophiae Doctor (PhD), Thesis 2016:32 (PhD), Doctor Philosophiae ISBN: 978-82-575-1324-5 Norwegian University of Life Sciences ISSN: 1894-6402 Faculty of Veterinary Medicine and Biosciences Department of Plant Sciences Philosophiae Doctor (PhD) Thesis 2016:32 Mohamed Abdelhalim Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet Postboks 5003 Mohamed Abdelhalim NO-1432 Ås, Norway +47 67 23 00 00 www.nmbu.no Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity. Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet. Philosophiae Doctor (PhD) Thesis Mohamed Abdelhalim Department of Plant Sciences Faculty of Veterinary Medicine and Biosciences Norwegian University of Life Sciences Ås (2016) Thesis number 2016:32 ISSN 1894-6402 ISBN 978-82-575-1324-5 Supervisors: Professor Anne Marte Tronsmo Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Professor Odd Arne Rognli Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Adjunct Professor May Bente Brurberg Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Researcher Dr. Ingerd Skow Hofgaard The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Dr. Petter Marum Graminor AS. Bjørke forsøksgård, Hommelstadvegen 60 NO-2344 Ilseng, Norway Associate Professor Åshild Ergon Department of Plant Sciences, Norwegian University of Life Sciences P.O. -
Phylogenetic Analyses and Toxigenic Profiles of Fusarium Equiseti and Fusarium Acuminatum Isolated from Cereals from Southern Eu
Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from Southern Europe Patricia Marin a, Antonio Morettib, Alberto Ritienic, Miguel Jurado d, Covadonga Vazquez e, M. Teresa Gonzalez-Jaena* ABSTRACT Fusarium equiseti and Fusarium acuminatum are toxigenic species that contaminate cereal crops from diverse climatic regions. They are common in Spanish cereals. The information available on their phylogenetics and toxigenic profiles is, however, insufficient to assist risk evaluation. In this work, phylogenetic analyses were performed using partial sequences of the translation elongation factor gene (EF-\a) of F. equiseti and F. acuminatum strains isolated from barley and wheat from Spain and other countries. The Northern and Southern European F. equiseti strains largely separated into two phyloge- netically distinct clusters. This suggests the existence of two distinct populations within this species, explaining its presence in these regions of markedly different climate. Production of type A and B trichothecenes by the Spanish strains, examined in wheat cultures using a multitoxin analytical method, indicated that F. equiseti could produce deoxynivalenol and nivalenol and other trichothecenes, at concentrations that might represent a significant risk of toxin contamination for Southern European cereals. F. acuminatum showed low intraspecific genetic variability and 58% of the strains could produce deoxynivalenol at low level. Neither species was found to produce T-2 or HT-2 toxins. The present results provide important phylogenetic and toxigenic information essential for the accurate prediction of toxigenic risk. 1. Introduction Fusarium acuminatum, Fusarium subglutinans, Fusarium solani, Fusarium oxysporum, Fusarium semitectum, Fusarium verticillioides Cereals are a dietary staple in most temperate regions. -
Identification and Characterization of Spontaneous Auxotrophic Mutants in Fusarium Langsethiae
microorganisms Article Identification and Characterization of Spontaneous Auxotrophic Mutants in Fusarium langsethiae Olga Gavrilova, Anna Skritnika and Tatiana Gagkaeva * All-Russian Institute of Plant Protection (VIZR), St.-Petersburg, Pushkin 196608, Russia; [email protected] (O.G.); [email protected] (A.S.) * Correspondence: [email protected]; Tel.: +7-812-333-3764; Fax: +7-812-470-5110 Academic Editor: Martin von Bergen Received: 24 February 2017; Accepted: 27 March 2017; Published: 31 March 2017 Abstract: Analysis of 49 strains of Fusarium langsethiae originating from northern Europe (Russia, Finland, Sweden, UK, Norway, and Latvia) revealed the presence of spontaneous auxotrophic mutants that reflect natural intraspecific diversity. Our investigations detected that 49.0% of F. langsethiae strains were auxotrophic mutants for biotin, and 8.2% of the strains required thiamine as a growth factor. They failed to grow on vitamin-free media. For both prototrophic and auxotrophic strains, no growth defect was observed in rich organic media. Without essential vitamins, a significant reduction in the growth of the auxotrophic strains results in a decrease of the formation of T-2 toxin and diacetoxyscirpenol. In addition, all analysed F. langsethiae strains were distinguished into two subgroups based on PCR product sizes. According to our results, 26 and 23 strains of F. langsethiae belong to subgroups I and II respectively. We determined that the deletion in the intergenic spacer (IGS) region of the rDNA of F. langsethiae belonging to subgroup II is linked with temperature sensitivity and causes a decrease in strain growth at 30 ◦C. Four thiamine auxotrophic strains were found in subgroup I, while 21 biotin auxotrophic strains were detected in subgroups II. -
Ergotism and Other Mycotoxicoses in Ancient Mesopotamia?
Ergotism and Other Mycotoxicoses in Ancient Mesopotamia? Robert D. Biggs The Oriental Institute, University of Chicago It is well known that the synthetic hallucinogen LSD (d-lysergic acid diethylamide) is derived from ergot, a fungus that grows on a variety of grasses. While the synthetic form is a relatively recent formula- tion and has inspired a scholarly literature of its own, the effect of ergot in human health has also been studied extensi vely in recent years I. When ingested in sufficient quantities, ergot produces a disease called ergotism which, in serious cases, has two variants, gangrenous and convulsive'. The designation "convul- sive" does not refer to true convulsions when consciousness is lost. The symptoms of convulsive ergotism include tingling in the fingers, crawling sensations on the skin, headaches, vertigo, muscle spasms leading to epileptic type convulsions, confusion, delusions, hallucinations, vomiting, and diarrhea", In connection with some of these manifestations, it is worth mentioning that there has been a serious suggestion that 4 ergotism was a major factor in the infamous Salem witchcraft affair of 1691 and 1692 • It has also been implicated in fa grande peur in France in 17895• We are all familiar with a number of fungi, which include mushrooms, molds, and mildews. We are also aware of the toxicity of some, especially mushrooms, but nevertheless a number of people each year are poisoned because they make a bad choice of which mushrooms to eat. Mushrooms, of course, are very visible fungi about which a great deal is published and about which many people consider themselves knowledgeable.