Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions Activated Resistance of Bentgrass Cultivars to Microdochium nivale under Predicted Climate Change Conditions by Sara Marie Stricker A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Environmental Science Guelph, Ontario, Canada © Sara Marie Stricker, September, 2017 ABSTRACT ACTIVATED RESISTANCE OF BENTGRASS CULTIVARS TO MICRODOCHIUM NIVALE UNDER PREDICTED CLIMATE CHANGE CONDITIONS Sara Marie Stricker Advisor: University of Guelph, 2017 Professor Dr. Tom Hsiang The potential impact of predicted climate change on Microdochium nivale, which causes Microdochium patch on turfgrasses was investigated. Turfgrasses exposed to temperature fluctuations exhibited increased yellowing caused by M. nivale compared to a constant lower temperature incubation. The effect of increased CO2 (from 400 ppm to 800 ppm) on M. nivale hyphal growth, percent yellowing, and biochemical response was assessed for Agrostis spp. and Poa annua cultivars. The efficacy of the resistance activator, Civitas + Harmonizer, was assessed under conditions of increased CO2, two temperatures, and field conditions. Civitas + Harmonizer often decreased disease symptoms, and suppression varied by cultivar and environmental conditions. Elevated CO2 did not affect the growth of M. nivale, although evidence from growth room trials suggests it may decrease Microdochium patch disease severity in the future. However, the interactive effects of temperature, snow cover conditions, and moisture availability in the field under future conditions is unknown. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Dr. Tom Hsiang for welcoming me back into his lab and for his guidance, patience, and wry witticisms that kept me going. I am also very grateful for the opportunities I have had to participate in conferences and educational experiences throughout my time as a master’s student. Many thanks to other member of my committee, Dr. Annick Bertrand, for her enthusiasm, encouragement, and guidance. I thoroughly enjoyed my visit to Agriculture and Agri-Food Canada, and many thanks to Joseé Bourassa and Sandra Delaney for their statistical and technical assistance. Merci beaucoup! Additional thanks to Dr. Trygve Aamlid and the researchers at the Norwegian Institute of Bioeconomy Research (NIBIO) for sharing their insights on turfgrass disease trials in Scandinavia. I also owe a great debt of gratitude to Dr. Greg Boland for introducing me to the fascinating world of plant pathology. I am also grateful to my friends and family, especially my mom and sister who were always just a phone call away. Thank you to Nureen, for your unwavering confidence in me. I would also like to extend my sincere thanks to Anne-Miet Van Den Nieuwelaar, Matt Rudland, Jie Chen, and all of my colleagues over the years, for their friendship and assistance. I would especially like to thank Linda Jewell, for being my mentor during my undergraduate studies and for always being my Microdochium nivale buddy; and to Craig Moore for sharing your coffee with me and for our countless chats. Finally, thank you to my office-mates, Ryan Gourlie, Moez Valliani, and Nahed Mahrous, for tolerating my mess and for their willingness to listen to my rants. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ..................................................................................................... iii TABLE OF CONTENTS ......................................................................................................... iii LIST OF FIGURES ................................................................................................................... x LIST OF ABBREVIATIONS AND ACRONYMS .............................................................. xiii Chapter 1 Literature Review ........................................................................................................ 1 1.1 Introduction .......................................................................................................................... 1 1.1.1 Turfgrass management .................................................................................................... 1 1.1.2 Cold acclimation and cold hardening ............................................................................. 2 1.1.3 Turfgrass diseases ........................................................................................................... 3 1.1.4 Pink snow mold .............................................................................................................. 3 1.2 Microdochium nivale ............................................................................................................ 4 1.2.1 Origin, distribution and host range of Microdochium nivale .......................................... 4 1.2.2 Microdochium nivale identification ................................................................................ 5 1.2.3 Life cycle of Microdochium nivale ................................................................................. 5 1.2.4 Effect of low temperature on Microdochium nivale ....................................................... 5 1.3 Management methods for Microdochium patch ............................................................... 6 1.3.1 Cultural control methods ................................................................................................. 6 1.3.2 Chemical control methods .............................................................................................. 8 1.3.3 Activated resistance ........................................................................................................ 9 1.4 Climate change and effects on turfgrass health .............................................................. 10 1.4.1 Winter de-hardening and environmental conditions ..................................................... 10 1.4.2 Effects of increased CO2 ............................................................................................... 10 1.4.3 Climate change and winter injury ................................................................................. 11 1.4.4 Influence of climate change on plant diseases .............................................................. 11 1.5 Turfgrass biochemistry under biotic and abiotic stresses .............................................. 12 1.5.1 Changes in free amino acids when under stress ............................................................ 12 1.5.2 Water soluble carbohydrate stress responses ................................................................ 12 1.6 Hypotheses and objectives ................................................................................................. 13 Chapter 2 Effects of Predicted Climate Change on Microdochium nivale ............................. 21 2.1 Introduction ........................................................................................................................ 21 2.1.1 In vitro effects of CO2 on Microdochium nivale .......................................................... 21 2.1.2 Effect of temperature on Microdochium nivale ............................................................ 21 2.2 Hypotheses and Objectives................................................................................................ 22 2.3. Materials and Methods ..................................................................................................... 23 2.3.1 Hyphal growth rates in agar tubes ................................................................................ 23 2.3.2 Effect of CO2 on Microdochium nivale ........................................................................ 23 2.3.3 Optimal growth temperature of Microdochium nivale ................................................. 23 2.3.4 High temperature exposure of Microdochium nivale ................................................... 23 2.3.5 Low temperature exposure of Microdochium nivale .................................................... 24 2.3.6 Statistical analysis ......................................................................................................... 24 2.4 Results ................................................................................................................................. 25 2.4.1 Effect of CO2 on Microdochium nivale ........................................................................ 25 2.4.2 Optimal growth temperature of Microdochium nivale ................................................. 25 2.4.3 High temperature exposure of Microdochium nivale ................................................... 25 2.4.4 Low temperature exposure of Microdochium nivale .................................................... 25 iv 2.5 Discussion ........................................................................................................................... 26 Chapter 3 Effects of Predicted Climate Change on Disease Caused by Microdochium nivale ........................................................................................................................................................ 33 3.1 Introduction ........................................................................................................................ 33 3.1.1 Effects of CO2 on plant diseases ................................................................................... 33 3.1.2 Grass response to changing temperatures ....................................................................
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • How Many Fungi Make Sclerotia?
    fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011).
    [Show full text]
  • Minireview Snow Molds: a Group of Fungi That Prevail Under Snow
    Microbes Environ. Vol. 24, No. 1, 14–20, 2009 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.ME09101 Minireview Snow Molds: A Group of Fungi that Prevail under Snow NAOYUKI MATSUMOTO1* 1Department of Planning and Administration, National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo 062–8555, Japan (Received January 5, 2009—Accepted January 30, 2009—Published online February 17, 2009) Snow molds are a group of fungi that attack dormant plants under snow. In this paper, their survival strategies are illustrated with regard to adaptation to the unique environment under snow. Snow molds consist of diverse taxonomic groups and are divided into obligate and facultative fungi. Obligate snow molds exclusively prevail during winter with or without snow, whereas facultative snow molds can thrive even in the growing season of plants. Snow molds grow at low temperatures in habitats where antagonists are practically absent, and host plants deteriorate due to inhibited photosynthesis under snow. These features characterize snow molds as opportunistic parasites. The environment under snow represents a habitat where resources available are limited. There are two contrasting strategies for resource utilization, i.e., individualisms and collectivism. Freeze tolerance is also critical for them to survive freezing temper- atures, and several mechanisms are illustrated. Finally, strategies to cope with annual fluctuations in snow cover are discussed in terms of predictability of the habitat. Key words: snow mold, snow cover, low temperature, Typhula spp., Sclerotinia borealis Introduction Typical snow molds have a distinct life cycle, i.e., an active phase under snow and a dormant phase from spring to In northern regions with prolonged snow cover, plants fall.
    [Show full text]
  • Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes
    microorganisms Article Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes Krishni Fernando 1,2, Priyanka Reddy 1, Inoka K. Hettiarachchige 1, German C. Spangenberg 1,2, Simone J. Rochfort 1,2 and Kathryn M. Guthridge 1,* 1 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; [email protected] (K.F.); [email protected] (P.R.); [email protected] (I.K.H.); [email protected] (G.C.S.); [email protected] (S.J.R.) 2 School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia * Correspondence: [email protected]; Tel.: +61390327062 Received: 27 May 2020; Accepted: 19 June 2020; Published: 24 June 2020 Abstract: Asexual Epichloë spp. fungal endophytes have been extensively studied for their functional secondary metabolite production. Historically, research mostly focused on understanding toxicity of endophyte-derived compounds on grazing livestock. However, endophyte-derived compounds also provide protection against invertebrate pests, disease, and other environmental stresses, which is important for ensuring yield and persistence of pastures. A preliminary screen of 30 strains using an in vitro dual culture bioassay identified 18 endophyte strains with antifungal activity. The novel strains NEA12, NEA21, and NEA23 were selected for further investigation as they are also known to produce alkaloids associated with protection against insect pests. Antifungal activity of selected endophyte strains was confirmed against three grass pathogens, Ceratobasidium sp., Dreschlera sp., and Fusarium sp., using independent isolates in an in vitro bioassay. NEA21 and NEA23 showed potent activity against Ceratobasidium sp.
    [Show full text]
  • Turfgrass Pest Management
    MSUE Pesticide Education Program TurfgrassTurfgrass PestPest ManagementManagement TrainingTraining forfor CommercialCommercial PesticidePesticide ApplicatorsApplicators Category 3A Developed by Greg Patchan, Julie Stachecki, and Kay Sicheneder MSUE Pesticide Education Program PrinciplesPrinciples ofof PestPest ManagementManagement Chapter 1 A pesticide applicator doesn’t just apply pesticides. Social and legal responsibilities accompany the use of toxic materials. MSUE Pesticide Education Program Pesticide application must protect plant material from pest injury without endangering nontarget organisms. MSUE Pesticide Education Program Integrated Pest Management MSUE Pesticide Education Program IPMIPM n Use of all available strategies to manage pests. n Achieve acceptable yield and quality. n Least environmental disruption. MSUE Pesticide Education Program IPMIPM PestPest ControlControl StrategiesStrategies n Resistant varieties n Cultural practices n Natural enemies n Mechanical controls n Pesticides n IPM is NOT anti-pesticide IPMIPM waswas developeddeveloped forfor agricultureagriculture because....because.... n No one method achieves long term pest management. n Pest management is a part of plant care. n Reduce costs. n Failures, resistance, pollution were the lessons. MSUE Pesticide Education Program IPMIPM StepsSteps forfor TurfgrassTurfgrass n Detection of what is injuring turfgrass. n Identification of agents injuring turfgrass. n Economic significance. n Selection of methods. n Evaluation. MSUE Pesticide Education Program Detection-MonitoringDetection-Monitoring
    [Show full text]
  • Bibliografía Botánica Ibérica, 2010 Fungi
    Botanica Complutensis 35: 177-182. 2011 ISSN: 0214-4565 Bibliografía Botánica Ibérica, 2010 Fungi Ana Rosa Burgaz1 2044. ALVARADO, P.; MANJÓN, J. L.; MATHENY, P. B. & ESTEVE- en la depresión del Guadalquivir (Granada). Lactarius RAVENTÓS, F. 2010. Tubariomyces, a new genus of Inocy- 18: 19-27. (Tax, Montagnea, Gr). baceae from the Mediterranean region. Mycologia 2054. BOTELLA, L.; SANTAMARÍA, O. & DÍEZ, J. J. 2010. Fun- 102(69): 1389-1397. (SisM, Tubariomyces, Bu, To, Vi). gi associated with the decline of Pinus halepensis in 2045. ARRILLAGA ANABITARTE, P. & MAYO Z ECHANIZ, M. I. Spain. Fungal Diversity 40: 1-11. (Fitopat, Ascomyce- 2006. Los hongos alucinógenos en la cultura de los pue- tes, A, B, Cu, Ge, Gr, L, M, Ma, Mu, T, Te, V, Z). blos. Aranzadiana 127: 232-243. (Etnobot, Ascomyce- 2055, BURGAZ, A. R. 2010. Bibliografía Botánica Ibérica, tes, Basidiomycetes). 2009. Bot. Complut. 34: 101-111. (Bibl). 2046. AZCÓN-AGUILAR, C.; PALENZUELA JIMÉNEZ, J.; RUIZ GI- 2056. CADIÑANOS-AGUIRRE, J. A. & MATEOS-IZQUIERDO, A. RELA, M.; FERROL, N.; AZCÓN, R.; IRURITA, J. M. & BA- 2010. El complejo Cortinarius cedretorum-C. elegan- REA NAVARRO, J. M. 2010. Análisis de la diversidad de tissimus en España. Bol. Soc. Micol. Madrid 34: 73- micorrizas y hongos micorrícicos asociados a especies 85. (Tax, Ecol, Cortinarius, B, Ba, Bi, Bu, Cc, Cs, Hu, de flora amenazada del Parque Nacional de Sierra Ne- S, Vi). vada: 173-190. En: L. Ramírez & B. Asensio (Eds.), Pro- 2057. CALONGE, F. D. 2010. Lepiota brunneoincarnata: se- yectos de Investigación en Parques Nacionales: 2006- gundo caso de envenenamiento familiar grave en Ma- 2009.
    [Show full text]
  • Typhula Blight Paul Koch, UW-Plant Pathology and PJ Liesch, UW Insect Diagnostic Lab
    XHT1270 Provided to you by: Typhula Blight Paul Koch, UW-Plant Pathology and PJ Liesch, UW Insect Diagnostic Lab What is Typhula blight? Typhula blight, also known as gray or speckled snow mold, is a fungal disease affecting all cool season turf grasses (e.g., Kentucky bluegrass, creeping bentgrass, tall fescue, fine fescue, perennial ryegrass) grown in areas with prolonged snow cover. These grasses are widely used in residential lawns and golf courses in Wisconsin and elsewhere in the Midwest. What does Typhula blight look like? Typhula blight initially appears as roughly circular patches of bleached or straw-colored turf that can be up to two to three feet in diameter. When the disease is severe, patches can merge to form larger, irregularly-shaped bleached areas. Affected turf is often matted and can have a water-soaked appearance. At the edges of patches, masses of grayish-white fungal threads (called a mycelium) may form. In 1 3 addition, tiny ( /64 to /16 inch diameter) reddish-brown or black fungal survival Typhula blight causes circular patches of structures (called sclerotia) may be bleached turf that often merge to form larger, irregularly-shaped bleached areas. present. Typhula blight looks very similar to Microdochium patch/pink snow mold (see University of Wisconsin Garden Facts XHT1145, Microdochium Patch), but the Microdochium patch fungus does not produce sclerotia. Where does Typhula blight come from? Typhula blight is caused by two closely related fungi Typhula incarnata and Typhula ishikariensis. In general, T. incarnata is more common in the southern half of Wisconsin while T. ishikariensis is more common in the northern half of the state.
    [Show full text]
  • Genetic and Pathogenic Differences Between Microdochium Nivale and Microdochium Majus
    Genetic and Pathogenic Differences Between Microdochium nivale and Microdochium majus by Linda Elizabeth Jewell A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Science Guelph, Ontario, Canada © Linda Elizabeth Jewell, December, 2013 ABSTRACT GENETIC AND PATHOGENIC DIFFERENCES BETWEEN MICRODOCHIUM NIVALE AND MICRODOCHIUM MAJUS Linda Elizabeth Jewell Advisor: University of Guelph, 2013 Professor Tom Hsiang Microdochium nivale and M. majus are fungal plant pathogens that cause cool-temperature diseases on grasses and cereals. Nucleotide sequences of four genetic regions were compared between isolates of M. nivale and M. majus from Triticum aestivum (wheat) collected in North America and Europe and for isolates of M. nivale from turfgrasses from both continents. Draft genome sequences were assembled for two isolates of M. majus and two of M. nivale from wheat and one from turfgrass. Dendograms constructed from these data resolved isolates of M. majus into separate clades by geographic origin. Among M. nivale, isolates were instead resolved by host plant species. Amplification of repetitive regions of DNA from M. nivale isolates collected from two proximate locations across three years grouped isolates by year, rather than by location. The mating-type (MAT1) and associated flanking genes of Microdochium were identified using the genome sequencing data to investigate the potential for these pathogens to produce ascospores. In all of the Microdochium genomes, and in all isolates assessed by PCR, only the MAT1-2-1 gene was identified. However, unpaired, single-conidium-derived colonies of M. majus produced fertile perithecia in the lab.
    [Show full text]
  • Perennial Ryegrass Lolium Perenne
    Perennial ryegrass Lolium perenne Owing to its high commercial availability, fast establishment rate, and deep and fibrous root system that reduces erosion, perennial ryegrass is used extensively as a nurse grass in establishing grass mixtures. It is therefore often incorporated into roadside grass mixtures. Despite these excellent attributes, perennial ryegrass receives one of the poorest ratings (Poor = D) as a turfgrass for roadside management owing to a variety of management concerns: Erosion Control Perennial ryegrass is exceptionally poor in providing ecosystem benefits. The species is non-native and Ease of Ecosystem non-persistent with some cultivars exhibiting high Maintenance Benefits leaching potential. Perennial ryegrass is also an aggressive competitor and hence a biodiversity reducer. D Commercial Rate of Availability Establishment and cost Mowing requirements for perennial ryegrass can be A Excellent substantial. The species requires fertilization and Resilience B Good irrigation to maintain turf quality beyond the first year of C Fair growth. Poor Drought D Acidity F Very poor Perennial ryegrass has very poor freezing and Freezing Salinity drought tolerances and requires fertile soils to persist. It is highly disease prone. Hence, resilience of NPK Low perennial ryegrass along roadsides is only fair. Fertility Competition Wear Western Central A Excellent B Good Perennial ryegrass is not recommended for C Fair D Poor use along roadsides in any part of Maryland Southern F Very poor owing to its sensitivity to freezing as well as Eastern Shore drought. 50 0 50 100 150 200 km Proven perennial ryegrass cultivars for Maryland in 2016 include Apple GL, Apple SGL, ASP6004, Banfield, Charismatic II GLSR, Fiesta 4, Grandslam GLD, Homerun, Line Drive GLS, Octane, Palmer V, Paragon GLR, Rio Vista, Soprano, Stellar GL, Stellar 3GL, and Uno.
    [Show full text]
  • Wheat Diseases Ii
    WHEAT DISEASES II 1. Foot rot or eyespot. L, lodging in a field; C, and R, lesions 2. Rhizoctonia bare patch, L; sharp on culms eyespot lesions on clums, R 3. Take-all. L, in the field; C, darkened clum bases; R, white 4. Helminthosporium root and crown (foot) heads rot. L, field; R, decayed crowns 5. Frost injury 6. VVinter injury 7. Fusarium root and 8. Typhula blight or speckled snow mold. crown (foot) rot L, infected plants; R, sclerotia 9. Soil-borne mosaic. L, in a low-lying 10. Barley yellow 11. VVheat streak 12. Herbicide (Trifluralin) field; R, leaf symptoms dwarf mosaic injury UNIVERSITY OF ILLINOIS COLLEGE OF AGRICULTURE PLANT DISEASE NO. 6 COOPERATIVE EXTENSION SERVICE and VOCATIONAL AGRICULTURE SERVICE URBANA, ILLINOIS WHEAT DISEASES II 1. Foot Rot or Eyespot, also known as strawbreaker, is caused by the F. culmorum . Seedlings may wither and die while older plants mature soil-borne fungus Pseudocercosporella (Cercosporella) herpotrichoides. early producing fewer tillers and white heads with mostly shriveled Maturing plants lean or break over (lodge) in all d irections from a basal seed. Dry, light-brown to reddish-brown lesions develop in invaded stem or foot rot that develops during wet weather in autumn, winter coleoptile, crown (foot) and root tissue. The greatest yield loss occurs and early spring. Lens-shaped, white-to-light tan lesions with dark when infection of the crown or foot reduces the stand in random or brown margins and up to 4 cm long, form vertically on the stems and irregular patches. Surviving diseased plants are brittle, stunted, and a lower leaf sheaths near the soil line.
    [Show full text]
  • Snow Molds of Turfgrasses, RPD No
    report on RPD No. 404 PLANT July 1997 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN SNOW MOLDS OF TURFGRASSES Snow molds are cold tolerant fungi that grow at freezing or near freezing temperatures. Snow molds can damage turfgrasses from late fall to spring and at snow melt or during cold, drizzly periods when snow is absent. It causes roots, stems, and leaves to rot when temperatures range from 25° to 60°F (-3° to 15°C). When the grass surface dries out and the weather warms, snow mold fungi cease to attack; however, infection can reappear in the area year after year. Snow molds are favored by excessive early fall applications of fast release nitrogenous fertilizers, Figure 1. Gray snow mold on a home lawn (courtesy R. Alden excessive shade, a thatch greater than 3/4 inch Miller). thick, or mulches of straw, leaves, synthetics, and other moisture-holding debris on the turf. Disease is most serious when air movement and soil drainage are poor and the grass stays wet for long periods, e.g., where snow is deposited in drifts or piles. All turfgrasses grown in the Midwest are sus- ceptible to one or more snow mold fungi. They include Kentucky and annual bluegrasses, fescues, bentgrasses, ryegrasses, bermudagrass, and zoysiagrasses with bentgrasses often more severely damaged than coarser turfgrasses. Figure 2. Pink snow mold or Fusarium patch. patches are 8-12 There are two types of snow mold in the inches across, covered with pink mold as snow melts (courtesy R.W. Smiley). Midwest: gray or speckled snow mold, also known as Typhula blight or snow scald, and pink snow mold or Fusarium patch.
    [Show full text]
  • Snow Mold on Turfgrass Introduction Winter Diseases of Turfgrasses Are Often Associated with Melting Snow Or Cold, Wet Periods
    CORNELL COOPERATIVE EXTENSION OF ONEIDA COUNTY 121 Second Street Oriskany, NY 13424-9799 (315) 736-3394 or (315) 337-2531 FAX: (315) 736-2580 Snow Mold on Turfgrass Introduction Winter diseases of turfgrasses are often associated with melting snow or cold, wet periods. Bluegrasses (Poa sp.), fescues (Festuca sp.), and ryegrasses (Lolium sp.) may be attacked, but bentgrasses (Agrostis sp.) are most sus- ceptible. Two diseases, Gray Snow Mold (Typhula blight) and Pink Snow Mold, are common in New York and may occur singly or side-by-side. Since different fungicides may be used to control each of these diseases, it is necessary to distinguish between them. Symptoms Gray snow mold (Typhula blight) is caused by Typhula incarnata and related species. It is a true snow mold and appears as roughly circular bleached patches up to 60 cm in diameter (Figure 1). Soon after the snow melts, the infected grass may be matted and surrounded by a white to gray halo of fluffy fun- gal growth. Examination of the diseased plants reveals tiny tan or brown pea-like structures (sclerotia) on or imbedded in infected leaves. The severity of the dis- ease will vary. It is particularly severe when turf has been subjected to a pro- longed, deep, compacted snow cover. Although the disease is unsightly, it rarely kills the grass. Figure 1: Infected spots on turf. Disease Cycle The disease cycle for this fungus is nearly opposite that of most others. This fungus produces sclerotia (resting structures) to help it survive the summer months. In late fall when conditions are favorable, these sclerotia may produce mycelium or basidiocarps (Figure 2) that produce spores.
    [Show full text]