Microbiological Insights Into Ecology and Taphonomy of Prehistoric Wetlands

Total Page:16

File Type:pdf, Size:1020Kb

Microbiological Insights Into Ecology and Taphonomy of Prehistoric Wetlands Microbiological insights into ecology and taphonomy of prehistoric wetlands. By © 2018 Ashley A Klymiuk M.Sc. Systematics & Evolution, University of Alberta, 2011 B.Sc. Paleontology, University of Alberta, 2009 Submitted to the graduate degree program in Ecology & Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Benjamin Sikes Mark Holder Ari Jumpponen Leonard Krishtalka Jennifer Roberts Date Defended: 04 December 2018 ii The dissertation committee for Ashley A Klymiuk certifies that this is the approved version of the following dissertation: Microbiological insights into ecology and taphonomy of prehistoric wetlands. Chair: Benjamin Sikes Date Approved: 7 December 2018 iii Abstract In the course of this dissertation, I present investigations of the microbial constituents of fossil plants preserved at an anatomical level of detail, and detail the results of an ecological survey of root-endogenous fungi within the cosmopolitan emergent macrophyte, Typha. These studies together elucidate processes in the taphonomy of fossil plants. Biostratinomy is addressed through descriptions of saprotrophic communities within the Eocene Princeton Chert mire assemblage, and within a Carboniferous fern which previous studies had suggested contained fossilized actinobacteria. Re-investigation of the ‘actinobacteria’ suggests instead that the structures are disordered ferrous dolomites, raising implications for the contribution of sulfate- reducing bacteria to the early-diagenesis mineralization of plants preserved in carbonaceous concretions. The fossilized remains of saprotrophic and putatively endophytic fungi within roots of in-situ plants from the Princeton Chert also provide insight into early diagenesis. Some of the fungi described herein are preserved in several co-occurring developmental phases, providing evidence that early phases of silicification in this assemblage were rapid. As the Princeton Chert is not a hot-spring sinter deposit, these data conflict with prior hypotheses for the preservation of this peat-forming wetland assemblage. Understanding the microbial paleoecology of this system, and other wetland assemblages that constitute paleobotanical Konservat-lagerstätten, will provide important foundations upon which to improve hypotheses of plant-microbe interactions in the fossil record. Research into fossil plant-microbe interactions must, however, be conducted with reference to appropriate biogeochemical analogues. The concluding component of this dissertation establishes that endogenous fungi in contemporary wetland plant roots are affected by persistent inundation. Although the constituents of root- endogenous communities do not appear to change between inundated roots and those growing in iv subaerially-exposed soils, their incidence within roots does differ. These data offer clear implications for assessing the probable ecology of in-situ fossil plants that hosted endogenous microbial communities during life. v Acknowledgments My immense gratitude to the academic mentors I’ve had the privilege to work with: my advisor, Ben Sikes, who took a chance on my and probably regretted it more than once, but was nevertheless incredibly kind and positive; Ruth Stockey, who taught me valuable lessons about plant anatomy, quality control, and gave me a start in science; Gar Rothwell, whose dictum ‘When all else fails, look at the plant’ applies to so much more than botany and inspires me to think creatively about living and fossil analogues; Tom Taylor†, who illustrated gamesmanship and dedication to one’s goals; and Edith Taylor, whose kindness was only matched by her skilful editorial eye! Various members of the University community helped out with logistics or provided support during my time at KU. These include: Chris Haufler (Chair, Ecology & Evolutionary Biology); Leonard Krishtalka (Director, Biodiversity Institute); A. Townsend Peterson (Chair, Graduate Program Committee); Heather Shinogle (Microscopy and Analytical Imaging Lab); Wayne Dickerson (Geology); Dean Kettle and Scott Campbell (KU Field Station and Kansas Biological Survey); the US Army Corps of Engineers, Melvern Lake; Don Huggins (Central Plains Bioassessment Center); Rudolph Serbet (Taylor Paleobotany Lab); Aagje Ashe (Graduate Coordinator) and Dorothy Johanning (EEB Program Assistant). Over the course of many years at KU, I enjoyed the company of many labmates. In the Taylor Lab, Benni Bomfleur, Anne-Laure Decombiex, Patty Ryberg, Carla Harper and Julie Bergene offered stimulating conversation. Sikes Lab alumni Abby Glauser, Olivia Lynch, Taylor Patterson, Thomas Anneberg, and Jacob Stops are owed many thanks for assistance with research activities. I’ve enjoyed the occasional cup of coffee with current Sikes Lab members Theo Michaels, Paige Hansen, Jacob Hopkins, Tatiana Semenova-Neslon and Tom McKenna. vi Theo in particular helped out the first time I had to be on academic leave owing to family medical crises. Other friends who have assisted in that regard (including invaluable trips to the airport!), and who have dispensed kindness in moments when it was sorely needed, include Stephen Baca, Sally Chang, Crystal Maier, Marianna Simões, Kaila Colyott, Boryana Koseva, Kathy Denning, Spencer Mattingly, Matt Jones, Jackie Garcia, and Haley Burrill. When my mother was in grade school, she acquired the paperback Search for a Living Fossil, a narrative account of the discovery of the [first] living coelacanth, Latimeria chalumnae Smith, off the Comoros Islands. It opens with Marjorie Courtenay-Latimer poking about the docks for ichthyological specimens – female, outsider, scientist, and intensely curious. Plenty of people who come to paleontology cite Jurassic Park, or seeing dinosaurs in museums. I trace my own enthusiasm to a much-battered, age-worn green and purple schoolbook. Coming to KU was coming full circle, in a sense: Leaning over the coelacanth tank in the BI, and marvelling as JLB Smith himself might have, was the culmination of years of enthusiastic reading in pop science paleontology and geology. And in terms of reading, another serendipitous moment presented itself, when I had the opportunity to learn molecular phylogenetics from Mark Holder, whose analysis placing the Indonesian coelacanth was the first scientific paper I’d ever read. I can still hardly believe that one of my science heroes agreed to serve on my committee. I am also exceedingly grateful to Jennifer Roberts, whose geomicrobiology course filled an important gap in my knowledge and changed the way I conceptualized permineralization. Ari Jumpponen provided valuable critical feedback in the course of my research, and Leonard Krishtalka has been an enthusiastic supporter who constantly encouraged me to think big and conceptualize the ‘story’ in my work. vii My most sincere thanks and love to my mother – who not only hung onto a random book that happened to spark my imagination at the age of seven, but who encouraged me to hold onto those dreams. I’m thankful especially for all that we’ve been through together in the past three years. Or the past 15, whichever way you want to do the cancer math. I learned important life lessons, which I think will be of more use to me than a PhD, honestly. My immense gratitude to Dr Adrian Fairey, Dr Tim Wollin, and all the residents who have worked with the Alberta Urological Institute, the wonderful nurses and nephrology team at the Home Hemodialysis Program (Northern Alberta Renal Program), the brave and inspiring women of Sorrentino's Compassion House, and to all of Mum's friends up in Manning, who have been such a support to me, too. Finally, my most sincere thanks to my ‘book club’ and friends: Beth Bray, Theresa Cullen, Siobhan Davis, Jasmine DeGroot, Tatiana Hansbury†, Johanna Krüger, Karin Lach, Libby Weber, Jordan Wozniak and countless others. I appreciate every one of you, and having had you as sounding boards, moral support, and a shoulder to lean on, albeit at a distance. I don’t know why you put up with me, but I do know that Seneca wrote to Lucilius, insisting that he feared no hardship, harm, or loss of self, for he’d been writ immortal in the kind regard of friends. Last, but certainly not least, heartfelt thanks to Warren Cardinal-McTeague, who suffered my friendship a great many years, and gleefully tortured porgs with me. …It’s a long story. viii Table of Contents Chapter 1: Introduction ................................................................................................................... 1 References ................................................................................................................................... 8 Chapter 2: Reinvestigating Carboniferous ‘actinomycetes’ — authigenic formation of biomimetic carbonates provides insight into early diagenesis of permineralized plants .............. 24 Abstract ..................................................................................................................................... 24 Introduction ............................................................................................................................... 25 Materials and Methods .............................................................................................................. 28 Results ....................................................................................................................................... 30 Discussion ................................................................................................................................
Recommended publications
  • Bretziella, a New Genus to Accommodate the Oak Wilt Fungus
    A peer-reviewed open-access journal MycoKeys 27: 1–19 (2017)Bretziella, a new genus to accommodate the oak wilt fungus... 1 doi: 10.3897/mycokeys.27.20657 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Bretziella, a new genus to accommodate the oak wilt fungus, Ceratocystis fagacearum (Microascales, Ascomycota) Z. Wilhelm de Beer1, Seonju Marincowitz1, Tuan A. Duong2, Michael J. Wingfield1 1 Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 2 Department of Genetics, Forestry and Agricultural Bio- technology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa Corresponding author: Z. Wilhelm de Beer ([email protected]) Academic editor: T. Lumbsch | Received 28 August 2017 | Accepted 6 October 2017 | Published 20 October 2017 Citation: de Beer ZW, Marincowitz S, Duong TA, Wingfield MJ (2017) Bretziella, a new genus to accommodate the oak wilt fungus, Ceratocystis fagacearum (Microascales, Ascomycota). MycoKeys 27: 1–19. https://doi.org/10.3897/ mycokeys.27.20657 Abstract Recent reclassification of the Ceratocystidaceae (Microascales) based on multi-gene phylogenetic infer- ence has shown that the oak wilt fungus Ceratocystis fagacearum does not reside in any of the four genera in which it has previously been treated. In this study, we resolve typification problems for the fungus, confirm the synonymy ofChalara quercina (the first name applied to the fungus) andEndoconidiophora fagacearum (the name applied when the sexual state was discovered). Furthermore, the generic place- ment of the species was determined based on DNA sequences from authenticated isolates. The original specimens studied in both protologues and living isolates from the same host trees and geographical area were examined and shown to represent the same species.
    [Show full text]
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • Pdf of Online Mansucript
    VOLUME 3 JUNE 2019 Fungal Systematics and Evolution PAGES 135–156 doi.org/10.3114/fuse.2019.03.07 Taxonomic revision and multi-locus phylogeny of the North American clade of Ceratocystis L.A. Holland1, D.P. Lawrence1, M.T. Nouri2, R. Travadon1, T.C. Harrington3, F.P. Trouillas2* 1Department of Plant Pathology, University of California, Davis, CA 95616, USA 2Department of Plant Pathology, University of California, Kearney Agricultural Research and Extension Centre, Parlier, CA 93648, USA 3Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA *Corresponding author: [email protected] Key words: Abstract: The North American clade (NAC) of Ceratocystis includes pathogenic species that infect a wide range almond of woody hosts. Previous phylogenetic analyses have suggested that this clade includes cryptic species and a Ceratocystidaceae paraphyletic C. variospora. In this study, we used morphological data and phylogenetic analyses to characterize Ceratocystis canker NAC taxa, including Ceratocystis isolates causing a serious disease of almond trees in California. Phylogenetic new species analyses based on six gene regions supported two new species of Ceratocystis. Ceratocystis destructans is taxonomy introduced as the species causing severe damage to almond trees in California, and it has also been isolated from wounds on Populus and Quercus in Iowa. It is morphologically similar to C. tiliae, a pathogen on Tilia and the most recently characterized species in the NAC. Ceratocystis betulina collected from Betula platyphylla in Japan is also newly described and is the sister taxon to C. variospora. Our six-locus phylogenetic analyses and morphological characterization resolved several cryptic species in the NAC.
    [Show full text]
  • EAA Meeting 2016 Vilnius
    www.eaavilnius2016.lt PROGRAMME www.eaavilnius2016.lt PROGRAMME Organisers CONTENTS President Words .................................................................................... 5 Welcome Message ................................................................................ 9 Symbol of the Annual Meeting .............................................................. 13 Commitees of EAA Vilnius 2016 ............................................................ 14 Sponsors and Partners European Association of Archaeologists................................................ 15 GENERAL PROGRAMME Opening Ceremony and Welcome Reception ................................. 27 General Programme for the EAA Vilnius 2016 Meeting.................... 30 Annual Membership Business Meeting Agenda ............................. 33 Opening Ceremony of the Archaelogical Exhibition ....................... 35 Special Offers ............................................................................... 36 Excursions Programme ................................................................. 43 Visiting Vilnius ............................................................................... 57 Venue Maps .................................................................................. 64 Exhibition ...................................................................................... 80 Exhibitors ...................................................................................... 82 Poster Presentations and Programme ...........................................
    [Show full text]
  • The Paleoecology and Biogeography of Ordovician Edrioasteroids
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2011 The Paleoecology and Biogeography of Ordovician Edrioasteroids Rene Anne Lewis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Paleontology Commons Recommended Citation Lewis, Rene Anne, "The Paleoecology and Biogeography of Ordovician Edrioasteroids. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/1094 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rene Anne Lewis entitled "The Paleoecology and Biogeography of Ordovician Edrioasteroids." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Geology. Michael L. McKinney, Major Professor We have read this dissertation and recommend its acceptance: Colin D. Sumrall, Linda C. Kah, Arthur C. Echternacht Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) THE PALEOECOLOGY AND BIOGEOGRAPHY OF ORDOVICIAN EDRIOASTEROIDS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville René Anne Lewis August 2011 Copyright © 2011 by René Anne Lewis All rights reserved.
    [Show full text]
  • Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As an Alternative for Biological Control
    Appl Microbiol Biotechnol (2016) 100:3799–3812 DOI 10.1007/s00253-015-7233-6 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 29 December 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Plant-parasitic nematodes are estimated to cause Keywords Phytoparasitic nematodes . Nematicides . global annual losses of more than US$ 100 billion. The num- Oligosporon-type antibiotics . Nematophagous fungi . ber of registered nematicides has declined substantially over Secondary metabolites . Biocontrol the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally Introduction beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, Nematodes as economically important crop pests are therefore urgently required. Nematophagous fungi are nat- ural antagonists of nematode parasites, and these offer an eco- Among more than 26,000 known species of nematodes, 8000 physiological source of novel biocontrol strategies. In this first are parasites of vertebrates (Hugot et al. 2001), whereas 4100 section of a two-part review article, we discuss 83 nematicidal are parasites of plants, mostly soil-borne root pathogens and non-nematicidal primary and secondary metabolites (Nicol et al. 2011). Approximately 100 species in this latter found in nematophagous ascomycetes. Some of these sub- group are considered economically important phytoparasites stances exhibit nematicidal activities, namely oligosporon, of crops.
    [Show full text]
  • Factors Affecting the Performance of Pochonia Chlamydosporia As a Biological Control Agent for Nematodes
    CRANFIELD UNNERSITY APPLIED MYCOLOGY GROUP INSTITUTE OF BIOSCIENCE AND TECHNOLOGY PhD THESIS Academic Year 2006-2007 IV ANIA ESTEVES FACTORS AFFECTING THE PERFORMANCE OF POCHONIA CHLAMYDOSPORIA AS A BIOLOGICAL CONTROL AGENT FOR NEMATODES SUPERVISORS: Professor Brian Kerry Professor N aresh Magan January 2007 ©Cranfield University, 2007. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. To my grandfather, Antonio Joaquim Grazina Abstract ABSTRACT The work developed in this thesis aimed to increase understanding about the variability and stability in eleven biotypes of Pochonia chlamydosporia, a facultative parasitic fungus with potential as a biological control agent against root-knot (Meloidogyne spp.), false root-knot (Naccobus spp.) and cyst nematodes (Heterodera and Globodera, spp.). Differences in performance were assessed by measuring saprophytic and parasitic growth using in vitro bioassays. Information on virulence (in vitro) was collected for a range of biotypes with the objective to relate in vitro parasitic growth with rhizosphere colonisation ability and secretion of extracellular enzymes. Results showed differences between biotypes in their ability to colonise the rhizosphere of plants, parasitise nematode eggs and to produce a range of extracellular enzymes but no significant relationships were found between saprophytic or parasitic growth and enzyme production. For the first time, the specific activity of protease, chitinase, esterase and lipase enzyme production by eleven biotypes of the fungus was examined. Enzymatic activity was shown to vary with the biotype and type of enzyme assayed and biotypes could be ranked according to their similarities in enzyme production A novel bioassay to estimate egg parasitism using liquid media highlighted the importance of nutrition in infection processes and suggested that all biotypes are able to infect large numbers of eggs rapidly if the conditions are favourable.
    [Show full text]
  • Genetic and Pathogenic Differences Between Microdochium Nivale and Microdochium Majus
    Genetic and Pathogenic Differences Between Microdochium nivale and Microdochium majus by Linda Elizabeth Jewell A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Science Guelph, Ontario, Canada © Linda Elizabeth Jewell, December, 2013 ABSTRACT GENETIC AND PATHOGENIC DIFFERENCES BETWEEN MICRODOCHIUM NIVALE AND MICRODOCHIUM MAJUS Linda Elizabeth Jewell Advisor: University of Guelph, 2013 Professor Tom Hsiang Microdochium nivale and M. majus are fungal plant pathogens that cause cool-temperature diseases on grasses and cereals. Nucleotide sequences of four genetic regions were compared between isolates of M. nivale and M. majus from Triticum aestivum (wheat) collected in North America and Europe and for isolates of M. nivale from turfgrasses from both continents. Draft genome sequences were assembled for two isolates of M. majus and two of M. nivale from wheat and one from turfgrass. Dendograms constructed from these data resolved isolates of M. majus into separate clades by geographic origin. Among M. nivale, isolates were instead resolved by host plant species. Amplification of repetitive regions of DNA from M. nivale isolates collected from two proximate locations across three years grouped isolates by year, rather than by location. The mating-type (MAT1) and associated flanking genes of Microdochium were identified using the genome sequencing data to investigate the potential for these pathogens to produce ascospores. In all of the Microdochium genomes, and in all isolates assessed by PCR, only the MAT1-2-1 gene was identified. However, unpaired, single-conidium-derived colonies of M. majus produced fertile perithecia in the lab.
    [Show full text]
  • Species: Melaleuca Quinquenervia
    Species: Melaleuca quinquenervia http://www.fs.fed.us/database/feis/plants/tree/melqui/all.html SPECIES: Melaleuca quinquenervia Introductory Distribution and occurrence Botanical and ecological characteristics Fire ecology Fire effects Management considerations References INTRODUCTORY SPECIES: Melaleuca quinquenervia AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS AUTHORSHIP AND CITATION: Munger, Gregory T. 2005. Melaleuca quinquenervia. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: MELQUI SYNONYMS: None NRCS PLANT CODE [98]: MEQU COMMON NAMES: melaleuca cajeput paperbark tree punktree TAXONOMY: The currently accepted scientific name for melaleuca is Melaleuca quinquenervia (Cav.) S. T. Blake (Mytraceae) [9,30,31,37,41,42,94,115,116]. Turner and others [96] provide a brief review of the Melaleuca genus in Australia, indicating that all known Melaleuca spp. (up to 250) are native, and all but 9 are endemic. Boland and others [9] suggest there are about 1 of 50 9/24/2007 4:51 PM Species: Melaleuca quinquenervia http://www.fs.fed.us/database/feis/plants/tree/melqui/all.html 150 described species of Melaleuca. The name melaleuca is of Greek origin, meaning "black and white", presumably referring to the white bark that is often charred black by fire (Debenham 1962 as cited in [96]. LIFE FORM: Tree Tree-shrub FEDERAL LEGAL STATUS: Noxious weed [97] OTHER STATUS: Florida Department of Environmental Quality lists melaleuca as a Class I Prohibited aquatic plant ("under no circumstances...permitted for possession, collection, transportation, cultivation, and importation...") [27].
    [Show full text]
  • Microdochium Nivale in Perennial Grasses: Snow Mould Resistance, Pathogenicity and Genetic Diversity
    Philosophiae Doctor (PhD), Thesis 2016:32 (PhD), Doctor Philosophiae ISBN: 978-82-575-1324-5 Norwegian University of Life Sciences ISSN: 1894-6402 Faculty of Veterinary Medicine and Biosciences Department of Plant Sciences Philosophiae Doctor (PhD) Thesis 2016:32 Mohamed Abdelhalim Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet Postboks 5003 Mohamed Abdelhalim NO-1432 Ås, Norway +47 67 23 00 00 www.nmbu.no Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity. Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet. Philosophiae Doctor (PhD) Thesis Mohamed Abdelhalim Department of Plant Sciences Faculty of Veterinary Medicine and Biosciences Norwegian University of Life Sciences Ås (2016) Thesis number 2016:32 ISSN 1894-6402 ISBN 978-82-575-1324-5 Supervisors: Professor Anne Marte Tronsmo Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Professor Odd Arne Rognli Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Adjunct Professor May Bente Brurberg Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Researcher Dr. Ingerd Skow Hofgaard The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Dr. Petter Marum Graminor AS. Bjørke forsøksgård, Hommelstadvegen 60 NO-2344 Ilseng, Norway Associate Professor Åshild Ergon Department of Plant Sciences, Norwegian University of Life Sciences P.O.
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]
  • Laurus L., Lauraceae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla SPECIAL Late Neogene history of the laurel tree ISSUE (Laurus L., Lauraceae) based on phylogeographical analyses of Mediterranean and Macaronesian populations Francisco Rodrı´guez-Sa´nchez1*, Beatriz Guzma´n2, Alfredo Valido3, Pablo Vargas2 and Juan Arroyo1 1Departamento de Biologı´a Vegetal y Ecologı´a, ABSTRACT Universidad de Sevilla, Sevilla, 2Real Jardı´n Aim The post-glacial range dynamics of many European plant species have been Bota´nico, CSIC, Madrid and 3A´rea de Biodiversidad y Conservacio´n, Universidad Rey widely investigated, but information rapidly diminishes as one moves further Juan Carlos, Madrid and Integrative Ecology back in time. Here we infer the historical range shifts of Laurus, a paradigmatic Group, Estacio´n Biolo´gica de Don˜ana, CSIC, tree of the Tethyan flora that has covered southern Eurasia since the Sevilla, Spain Oligo-Miocene, by means of phylogenetic and phylogeographical analyses. Location Mediterranean Basin, Black Sea and Macaronesian archipelagos (Azores, Madeira, Canary Islands). Methods We analysed plastid DNA (cpDNA) sequence (trnK–matK, trnD–trnT) variation in 57 populations of Laurus and three Lauraceae genera. Phylogenetic methods (maximum parsimony and Bayesian inference) and statistical parsimony networks were used to reconstruct relationships among haplotypes. These results were contrasted with the fossil record and bioclimatic niche-based model predictions of past distributions to infer the migration routes and location of refugia. Results The phylogenetic tree revealed monophyly for Laurus. Overall sequence variability was low within Laurus, but six different haplotypes were distinguished and a single network retrieved, portraying three lineages primarily related to geography.
    [Show full text]