Hyponectria Buxi with Notes on the Hyponectriaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novosti Sistematiki Nizshikh Rastenii 53(2): 315–332
Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 53(2): 315–332. 2019 Checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Uzbekistan) I. M. Mustafaev, N. Yu. Beshko, M. M. Iminova Institute of Botany of Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan Corresponding author: I. M. Mustafaev, [email protected] Abstract. A checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Nuratau Mountains, Uzbekistan) was compiled for the first time as a result of field research conducted in 2009–2017. In total, 197 species, 3 varieties and 51 forms of micromycetes belonging to 66 genera and 30 families have been identified. Among them 19 species (Asteromella tanaceti, Camarospori- um achilleae, Diplocarpon alpestre, Diplodia celtidis, Hendersonia ephedrae, Mycosphaerella artemi- siae, Neopseudocercosporella capsellae, Phoma hedysari, P. mororum, Phyllosticta prostrata, P. silenes, P. trifolii, Ramularia trifolii, Rhabdospora eremuri, Selenophoma nebulosa, Septoria cyperi, S. dauci, S. ranunculacearum, S. trifolii) and one form (Erysiphe cichoracearum f. tanaceti) were found for the first time for the mycobiota of Uzbekistan. 30 species of microfungi were recorded on 31 new host plants. The most abundant species are representatives of the cosmopolitan genera Ramularia, Sep- toria, Erysiphe, Leveillula, Mycosphaerella, Phoma, Cytospora, Sphaerotheca, Phyllosticta and Mars- sonina. The annotated checklist includes data on host plant, location, date and collection number of every species. Keywords: Ascomycetes, biodiversity, host plants, mycobiota, micromycetes, new records, Nuratau Mountains. чек-лист сумчатых микромицетов нуратинского природного заповедника (узбекистан) и. м. мустафаев, н. Ю. Бешко, м. м. иминова институт ботаники академии наук республики узбекистан, ташкент, узбекистан Автор для переписки: и. м. мустафаев, [email protected] Резюме. -
The Genera Excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae
Fungal Diversity 2 (March 1999) Studies on Amphisphaeriales: The genera excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae Ji-Chuan Kangl, Kevin D. Hydel• and Richard Y.c. Kontf I Fungal Diversity Research Project, Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong; * email: [email protected] 2 Department of Biology and Chemistry, City University of Hong Kong, Tat Chee A venue, Kowloon, Hong Kong Kang, J.C., Hyde, K.D. and Kong, R.Y.C. (1999). Studies on Amphisphaeriales: The genera excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae. Fungal Diversity 2: 135-151. The Amphisphaeriaceae and the Cainiaceae have been narrowly defined, while the Clypeosphaeriaceae was broadly defined and considered a relatively large assemblage of ascomycetes whose affinities are uncertain. In this paper, the remaining genera previously included in the Amphisphaeriaceae (sensu lato) are dealt with. Fasciatispora having unicellular brown ascospores, and Seynesia and Collodiscula having brown ascospores and an Acanthodochium anamorph are similar to xylariaceous taxa and therefore considered best placed in the Xylariaceae. Muelleromyces has a parasitic habit on leaves, clypeate ascomata and asci with a J- apical ring and resembles Phyllachora, and is placed in the Phyllachoraceae. Melomastia is redescribed and illustrated and placed in the Pleurotremataceae. Chitonospora, Dyrithium and lodosphaeria are redescribed and illustrated, while Amphisphaerella, Ascotaiwania, Flagellosphaeria, Lindquistomyces, Manokwaria, Mukhakesa, Neohypodiscus, Urosporellopsis and Xylochora are discussed. These genera are placed in Ascomycetes incertae sedis as the available morphological data are inadequate to confidently conclude their taxonomic positions. Key words: Ascomycetes incertae sedis, Phyllachoraceae, Pleurotremataceae, taxonomy, Xylariaceae. Introduction The broadly defined Amphisphaeriaceae G. -
Buxus Sempervirens1
Fact Sheet FPS-80 October, 1999 Buxus sempervirens1 Edward F. Gilman2 Introduction Long a tradition in colonial landscapes, Boxwood is a fine- textured plant familiar to most gardeners and non-gardeners alike (Fig. 1). Eventually reaching 6- to 8-feet-tall (old specimens cab be much taller), Boxwood grows slowly into a billowing mound of soft foliage. Flowers are borne in the leaf axils and are barely noticeable to the eye, but they have a distinctive aroma that irritates some people. General Information Scientific name: Buxus sempervirens Pronunciation: BUCK-sus sem-pur-VYE-renz Common name(s): Common Boxwood, Common Box, American Boxwood Family: Buxaceae Plant type: shrub USDA hardiness zones: 6 through 8 (Fig. 2) Planting month for zone 7: year round Planting month for zone 8: year round Origin: not native to North America Figure 1. Common Boxwood. Uses: border; edging; foundation; superior hedge Availablity: generally available in many areas within its Growth rate: slow hardiness range Texture: fine Description Foliage Height: 8 to 20 feet Spread: 10 to 15 feet Leaf arrangement: opposite/subopposite Plant habit: round Leaf type: simple Plant density: dense Leaf margin: entire 1.This document is Fact Sheet FPS-80, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October, 1999 Please visit the EDIS Web site at http://edis.ifas.ufl.edu. 2.Edward F. Gilman, professor, Environmental Horticulture Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611. The Institute of Food and Agricultural Sciences is an equal opportunity/affirmative action employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, age, handicap, or national origin. -
Cylindrocladium Buxicola Nom. Cons. Prop.(Syn. Calonectria
I Promotors: Prof. dr. ir. Monica Höfte Laboratory of Phytopathology, Department of Crop Protection Faculty of Bioscience Engineering Ghent University Dr. ir. Kurt Heungens Institute for Agricultural and Fisheries Research (ILVO) Plant Sciences Unit - Crop Protection Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe II Bjorn Gehesquière Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences III Dutch translation of the title: Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) in Buxus: moleculaire karakterisering, epidemiologie, waardplantresistentie en chemische bestrijding. Please refer to this work as follows: Gehesquière B. (2014). Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control. Phd Thesis. Ghent University, Belgium The author and the promotors give authorisation to consult and to copy parts of this work for personal use only. Any other use is limited by Laws of Copyright. Permission to reproduce any material contained in this work should be obtained from the author. The promotors, The author, Prof. dr. ir. M. Höfte Dr. ir. K. Heungens ir. B. Gehesquière IV Een woordje van dank…. Dit dankwoord schrijven is ongetwijfeld het leukste onderdeel van deze thesis, en een mooie afsluiting van een interessante periode. Terugblikkend op de voorbije vier jaren kan ik enkel maar beamen dat een doctoraat zoveel meer is dan een wetenschappelijke uitdaging. Het is een levensreis in al zijn facetten, waarbij ik mezelf heb leren kennen in al mijn goede en slechte kantjes. -
Genetic and Pathogenic Differences Between Microdochium Nivale and Microdochium Majus
Genetic and Pathogenic Differences Between Microdochium nivale and Microdochium majus by Linda Elizabeth Jewell A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Science Guelph, Ontario, Canada © Linda Elizabeth Jewell, December, 2013 ABSTRACT GENETIC AND PATHOGENIC DIFFERENCES BETWEEN MICRODOCHIUM NIVALE AND MICRODOCHIUM MAJUS Linda Elizabeth Jewell Advisor: University of Guelph, 2013 Professor Tom Hsiang Microdochium nivale and M. majus are fungal plant pathogens that cause cool-temperature diseases on grasses and cereals. Nucleotide sequences of four genetic regions were compared between isolates of M. nivale and M. majus from Triticum aestivum (wheat) collected in North America and Europe and for isolates of M. nivale from turfgrasses from both continents. Draft genome sequences were assembled for two isolates of M. majus and two of M. nivale from wheat and one from turfgrass. Dendograms constructed from these data resolved isolates of M. majus into separate clades by geographic origin. Among M. nivale, isolates were instead resolved by host plant species. Amplification of repetitive regions of DNA from M. nivale isolates collected from two proximate locations across three years grouped isolates by year, rather than by location. The mating-type (MAT1) and associated flanking genes of Microdochium were identified using the genome sequencing data to investigate the potential for these pathogens to produce ascospores. In all of the Microdochium genomes, and in all isolates assessed by PCR, only the MAT1-2-1 gene was identified. However, unpaired, single-conidium-derived colonies of M. majus produced fertile perithecia in the lab. -
Boxwoods for Pennsylvania Landscapes
Boxwoods for Pennsylvania Landscapes College of Agricultutal Sciences Agricultural Research and Cooperative Extension inter in many parts of Pennsylvania Each species contributes unique provides a stark, leafless, snow-covered characteristics, including size, color, scene among the deciduous hardwoods, insect resistance, and foliage. Common intermixed with dark green patches boxwood is a wide-spreading species of hemlock and other needle-leafed with very dense, evergreen foliage evergreens. Many homeowners look and cold tolerance to about -50F. The to enhance this beautiful scene with leaves are dark green above and yellow- 1 1 broadleaf evergreens in their landscape. green below, reaching /2" to 1 /2" in There are a number of broadleaf ever- length, and are oblong to oval in shape. green shrubs to choose from that are Japanese boxwood is a low-growing, suitable for the Pennsylvania landscape, compact, heat-tolerant shrub with including pieris, mountain laurel, leuco- bright green leaves that are elliptical 1 thoe, mahonia, pyracantha, leatherleaf to lance-shaped, and reach /4 to 1" in viburnum, rhododendron, holly, and length. Korean boxwood is a loose, boxwood. Most of these plants provide open-growing shrub that is very hardy, a rounded and spreading habit. For although the foliage may turn yellow formal gardens, hedges, or sites where a to brown in the winter. In the nursery W specific plant form is desired, Japanese and landscape trade today, numerous holly and boxwood are the most com- varieties and hybrids among these spe- mon choices. cies have been created and marketed for their unique characteristics, including Boxwoods (Buxus) are native to Europe, round, dwarf, and columnar forms, the Mediterranean, the West Indies, winter hardiness, and variegated foliage. -
Commelina Communis
Commelina communis Commelina communis Asiatic dayflower Introduction The genus Commelina has approximately 100 species worldwide, distributed primarily in tropical and temperate regions. Eight species occur in China[60][167] . Species of Commelina in China Flower of Commelina communis. (Photo pro- Scientific Name Scientific Name vided by LBJWC, Albert, F. W. Frick, Jr.) C. auriculata Bl. C. maculata Edgew. C. bengalensis L. C. paludosa Bl. roadsides [60]. C. communis L. C. suffruticosa Bl. Distribution C. diffusa Burm. f. C. undulata R. Br. C. communis is widely distributed in China, [60] but no records are reported stalk, often hirsute-ciliate marginally, Taxonomy for its distribution in Qinghai, Xinjiang, and acute apically. Cyme inflorescence [6][116][167] Family: Commelinaceae Hainan, and Tibet . has one flower near the top, with dark Genus: Commelina L. blue petals and membranous sepals 5 Economic Importance mm long. Capsules are elliptic, 5–7 Description Commelina communis has caused serious mm, and two-valved. The two seeds Commelina communis is an annual damage in the orchards of northeastern in each valve are brown-yellow, 2–3 [96] herb with numerous branched, creeping China . C. communis is used in Chinese mm long, irregularly pitted, flat-sided, [60] stems, which are minutely pubescent herbal medicine. and truncate at one end[60][167]. distally, 1 m long. Leaves are lanceolate to ovate-lanceolate, 3–9 cm long and Related Species 1.5–2 cm wide. Involucral bracts Habitat C. diffusa occurs in forests, thickets C. communis prefers moist, shady forest grow opposite the leaves. Bracts are and moist areas of southern China and edges. -
Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions
Activated Resistance of Bentgrass Cultivars to Microdochium nivale under Predicted Climate Change Conditions by Sara Marie Stricker A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Environmental Science Guelph, Ontario, Canada © Sara Marie Stricker, September, 2017 ABSTRACT ACTIVATED RESISTANCE OF BENTGRASS CULTIVARS TO MICRODOCHIUM NIVALE UNDER PREDICTED CLIMATE CHANGE CONDITIONS Sara Marie Stricker Advisor: University of Guelph, 2017 Professor Dr. Tom Hsiang The potential impact of predicted climate change on Microdochium nivale, which causes Microdochium patch on turfgrasses was investigated. Turfgrasses exposed to temperature fluctuations exhibited increased yellowing caused by M. nivale compared to a constant lower temperature incubation. The effect of increased CO2 (from 400 ppm to 800 ppm) on M. nivale hyphal growth, percent yellowing, and biochemical response was assessed for Agrostis spp. and Poa annua cultivars. The efficacy of the resistance activator, Civitas + Harmonizer, was assessed under conditions of increased CO2, two temperatures, and field conditions. Civitas + Harmonizer often decreased disease symptoms, and suppression varied by cultivar and environmental conditions. Elevated CO2 did not affect the growth of M. nivale, although evidence from growth room trials suggests it may decrease Microdochium patch disease severity in the future. However, the interactive effects of temperature, snow cover conditions, and moisture availability in the field under future conditions is unknown. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Dr. Tom Hsiang for welcoming me back into his lab and for his guidance, patience, and wry witticisms that kept me going. I am also very grateful for the opportunities I have had to participate in conferences and educational experiences throughout my time as a master’s student. -
Color Plates
Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper. -
Microdochium Nivale in Perennial Grasses: Snow Mould Resistance, Pathogenicity and Genetic Diversity
Philosophiae Doctor (PhD), Thesis 2016:32 (PhD), Doctor Philosophiae ISBN: 978-82-575-1324-5 Norwegian University of Life Sciences ISSN: 1894-6402 Faculty of Veterinary Medicine and Biosciences Department of Plant Sciences Philosophiae Doctor (PhD) Thesis 2016:32 Mohamed Abdelhalim Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet Postboks 5003 Mohamed Abdelhalim NO-1432 Ås, Norway +47 67 23 00 00 www.nmbu.no Microdochium nivale in perennial grasses: Snow mould resistance, pathogenicity and genetic diversity. Microdochium nivale i flerårig gras: Resistens mot snømugg, patogenitet og genetisk diversitet. Philosophiae Doctor (PhD) Thesis Mohamed Abdelhalim Department of Plant Sciences Faculty of Veterinary Medicine and Biosciences Norwegian University of Life Sciences Ås (2016) Thesis number 2016:32 ISSN 1894-6402 ISBN 978-82-575-1324-5 Supervisors: Professor Anne Marte Tronsmo Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Professor Odd Arne Rognli Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway Adjunct Professor May Bente Brurberg Department of Plant Sciences, Norwegian University of Life Sciences P.O. Box 5003, 1432 Ås, Norway The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Researcher Dr. Ingerd Skow Hofgaard The Norwegian Institute of Bioeconomy Research (NIBIO) Pb 115, NO-1431 Ås, Norway Dr. Petter Marum Graminor AS. Bjørke forsøksgård, Hommelstadvegen 60 NO-2344 Ilseng, Norway Associate Professor Åshild Ergon Department of Plant Sciences, Norwegian University of Life Sciences P.O. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Once Again on Discosphaerina
Karstenia 39:59-63, 1999 Once again on Discosphaerina LENNART HOLM, KERSTIN HOLM and MARGARET E. BARR HOLM, L., HOLM, K. & BARR, M.E. 1999: Once again on Discosphaerina.- Karste nia 39: 59-63. Helsinki. ISSN 0453-3402 Discosphaerina Hohn. is reinstated as a valid generic name, typified by D. discophora Hohn., for some small, amerosporous, unitunicate Ascomycetes that fit best within the family Hyponectriaceae. The new combinations D. niesslii (Kunze ex Rehm) L. Holm, K. Holm & M.E. Barr, and D. lonicerae (Dearn. & Barthol.) L. Holm, K. Holm & M.E. Barr are made, and the new species D. sorbi L. Holm, K. Holm & M.E. Barr is described. Guignardia Viala & Ravaz, nom. cons., is accepted for similar small, am erosporous but bitunicate Ascomycetes in the Dothideaceae. Key words: Ascomycetes, Hyponectriaceae, Dothideaceae, taxonomy, morphology Lennart Holm & Kerstin Holm, Botanical Museum, Uppsala University, No rbyvdgen 16, SE-752 36 Uppsala, Sweden Margaret E. Barr, 9475 inverness Road, Sidney, British Columbia, Canada V8L 5GB Introduction Within the past few years, we have been puzzled Arwidssonia B. Erikss. is similar by habit in by several amerosporous ascomycetes that lack leaves and by the collabent lenticular ascomata a defined ostiole and periphyses, and open irreg that open by three to five lobes. Arwidssonia ularly between cells in the upper region of as empetri (Rehm) B. Erikss. is a phragmosporous comata. The small ascomata are sphaeroid, often taxon. The hymenium does exhibit paraphyses, collabent on drying, and are visible as dark sunk and the ascus apices are amyloid after pretreat en dots in the affected tissues.