<I>Acrocordiella</I>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biscogniauxia Granmoi (Xylariaceae) in Europe
©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Osten. Z.Pilzk 8(1999) 139 Biscogniauxia granmoi (Xylariaceae) in Europe THOMAS L£SS0E CHRISTIAN SCHEUER Botanical Institute, Copenhagen University Institut fiir Botanik der Karl-Franzens-Universitat Oster Farimagsgade 2D Holteigasse 6 DK-1353 Copenhagen K, Denmark A-8010 Graz, Austria e-mail: [email protected] e-mail: [email protected] ALFRED GRANMO Trornso Museum, University of Tromse N-9037 Tromso, Norway e-mail: [email protected] Received 5. 7. 1999 Key words: Xylariaceae, Biscogniauxia. - Taxonomy, distribution. - Fungi of Europe, Asia. Abstract: Biscogniauxia granmoi, growing on Prunus padus (incl. var. pubescens = Padus asiatica) is reported from Europe and Asia, with material from Austria, Latvia, Norway, Poland, and Far Eastern Russia. It is compared with B. nummulana s. str., B. capnodes and B. simphcior. The taxon was included in the recent revision of Biscogniauxia by JU & al. {1998, Mycotaxon 66: 50) under the name "B. pruni GRANMO, L/ESS0E & SCHEUER" nom. prov. Zusammenfassung: Biscogniauxia granmoi, die bisher ausschließlich auf Prunus padus (inkl. var pubescens = Padus asiatica) gefunden wurde, wird aufgrund von Aufsammlungen aus Europa und Asien vorgestellt. Die bisherigen Belege stammen aus Österreich, Litauen, Norwegen, Polen und dem femöstlichen Teil Rußlands. Die Unterschiede zu B. nummulana s. Str., B. capnodes und H simphaor werden diskutiert. Dieses Taxon wurde unter dem Namen "B. pruni Granmo, l.aessoe & Scheuer" nom. prov. schon von JU & al. (1998, Mycotaxon 66: 50) in ihre Revision der Gattung Biscogniauxia aufge- nommen. The genus Biscogniauxia KUNTZE (Xylariaceae) was resurrected and amended by POUZAR (1979, 1986) for a group of Xylariaceae with applanate dark stromata that MILLER (1961) treated in Hypoxylon BULL., and for a group of species with thick, discoid stromata formerly placed in Nummularia TUL. -
The Genera Excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae
Fungal Diversity 2 (March 1999) Studies on Amphisphaeriales: The genera excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae Ji-Chuan Kangl, Kevin D. Hydel• and Richard Y.c. Kontf I Fungal Diversity Research Project, Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong; * email: [email protected] 2 Department of Biology and Chemistry, City University of Hong Kong, Tat Chee A venue, Kowloon, Hong Kong Kang, J.C., Hyde, K.D. and Kong, R.Y.C. (1999). Studies on Amphisphaeriales: The genera excluded from the Amphisphaeriaceae, Cainiaceae and Clypeosphaeriaceae. Fungal Diversity 2: 135-151. The Amphisphaeriaceae and the Cainiaceae have been narrowly defined, while the Clypeosphaeriaceae was broadly defined and considered a relatively large assemblage of ascomycetes whose affinities are uncertain. In this paper, the remaining genera previously included in the Amphisphaeriaceae (sensu lato) are dealt with. Fasciatispora having unicellular brown ascospores, and Seynesia and Collodiscula having brown ascospores and an Acanthodochium anamorph are similar to xylariaceous taxa and therefore considered best placed in the Xylariaceae. Muelleromyces has a parasitic habit on leaves, clypeate ascomata and asci with a J- apical ring and resembles Phyllachora, and is placed in the Phyllachoraceae. Melomastia is redescribed and illustrated and placed in the Pleurotremataceae. Chitonospora, Dyrithium and lodosphaeria are redescribed and illustrated, while Amphisphaerella, Ascotaiwania, Flagellosphaeria, Lindquistomyces, Manokwaria, Mukhakesa, Neohypodiscus, Urosporellopsis and Xylochora are discussed. These genera are placed in Ascomycetes incertae sedis as the available morphological data are inadequate to confidently conclude their taxonomic positions. Key words: Ascomycetes incertae sedis, Phyllachoraceae, Pleurotremataceae, taxonomy, Xylariaceae. Introduction The broadly defined Amphisphaeriaceae G. -
<I>Tothia Fuscella</I>
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/118.203 Volume 118, pp. 203–211 October–December 2011 Epitypification, morphology, and phylogeny of Tothia fuscella Haixia Wu1, Walter M. Jaklitsch2, Hermann Voglmayr2 & Kevin D. Hyde1, 3, 4* 1 International Fungal Research and Development Centre, Key Laboratory of Resource Insect Cultivation & Utilization, State Forestry Administration, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, 650224, PR China 2 Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030 Wien, Austria 3 School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand 4 Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11442, Saudi Arabia *Correspondence to: [email protected] Abstract — The holotype of Tothia fuscella has been re-examined and is re-described and illustrated. An identical fresh specimen from Austria is used to designate an epitype with herbarium material and a living culture. Sequence analyses show T. fuscella to be most closely related to Venturiaceae and not Microthyriaceae, to which it was previously referred. Key words — Dothideomycetes, molecular phylogeny, taxonomy Introduction We have been re-describing and illustrating the generic types of Dothideomycetes (Zhang et al. 2008, 2009, Wu et al. 2010, 2011, Li et al. 2011) and have tried where possible to obtain fresh specimens for epitypification and use molecular analyses to provide a natural classification. Our previous studies of genera in the Microthyriaceae, a poorly known family within the Dothideomycetes, have resulted in several advances (Wu et al. -
Resurrection and Emendation of the Hypoxylaceae, Recognised from a Multigene Phylogeny of the Xylariales
Mycol Progress DOI 10.1007/s11557-017-1311-3 ORIGINAL ARTICLE Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales Lucile Wendt1,2 & Esteban Benjamin Sir3 & Eric Kuhnert1,2 & Simone Heitkämper1,2 & Christopher Lambert1,2 & Adriana I. Hladki3 & Andrea I. Romero4,5 & J. Jennifer Luangsa-ard6 & Prasert Srikitikulchai6 & Derek Peršoh7 & Marc Stadler1,2 Received: 21 February 2017 /Revised: 12 April 2017 /Accepted: 19 April 2017 # The Author(s) 2017. This article is an open access publication Abstract A multigene phylogeny was constructed, including polymerase II (RPB2), and beta-tubulin (TUB2). Specimens a significant number of representative species of the main were selected based on more than a decade of intensive mor- lineages in the Xylariaceae and four DNA loci the internal phological and chemotaxonomic work, and cautious taxon transcribed spacer region (ITS), the large subunit (LSU) of sampling was performed to cover the major lineages of the the nuclear rDNA, the second largest subunit of the RNA Xylariaceae; however, with emphasis on hypoxyloid species. The comprehensive phylogenetic analysis revealed a clear-cut This article is part of the “Special Issue on ascomycete systematics in segregation of the Xylariaceae into several major clades, honor of Richard P. Korf who died in August 2016”. which was well in accordance with previously established morphological and chemotaxonomic concepts. One of these The present paper is dedicated to Prof. Jack D. Rogers, on the occasion of his fortcoming 80th birthday. clades contained Annulohypoxylon, Hypoxylon, Daldinia,and other related genera that have stromatal pigments and a Section Editor: Teresa Iturriaga and Marc Stadler nodulisporium-like anamorph. -
Bceccarelli Tesid.Pdf
A tutti quelli che aspettano l’ora della loro vita... "Dilige, et quod vis fac: sive taceas, dilectione taceas; sive clames, dilectione clames; sive emendes, dilectione emendes; sive parcas, dilectione parcas: radix sit intus dilectionis, non potest de ista radice nisi bonum existere". Sant'Agostino (In Io. Ep. tr. 7, 8) Abstract This thesis has investigated diversity and distribution of "pathogenic" and "non-pathogenic" fungal endophyte communities in twigs, leaves and buds of Fagus sylvatica in beech Italian forest into Monte Cimino area. In last decade European beech has been subject to a number of biotic and abiotic stresses included the increasing impact of drought and, as a consequence, the impact of native parasites that attack weakened hosts. Among these, Biscogniauxia nummularia (Bull.) Kuntze, associated with severe beech- declines, has been studied for its importance as latent pathogen of healthy beech tissues. Understanding how fungal endophyte communities differ in abundance, diversity and taxonomic composition is key to understanding the ecology and evolutionary context of endophyte-plant associations. Fungal ITS sequences were used for validation of morphological identification and phylogenetic analysis. According to the ITS phylogeny, endophytes studied belong to the main non-parasitic and non-lichenised orders of Pezizomycotina. The effects of native tissue, site exposure, and season on endophyte assemblages were investigated. Native tissue was the major factor shaping endophyte assemblages. Exposure and seasonal differences played a significant but lesser role. Several recently developed molecular methods offer new tools for determining the presence and diversity of fungi in complex microbial communities. Terminal restriction fragment (TRF) pattern analysis was tested as a method for assessing the molecular diversity of endophyte fungal community within asymptomatic beech tissues. -
Fungi from Submerged Plant Debris in Aquatic Habitats in Iraq
Vol. 6(6), pp. 468-487, June 2014 DOI: 10.5897/IJBC2013.0657 Article Number: 743231B45314 International Journal of Biodiversity ISSN 2141-243X Copyright © 2014 and Conservation Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC Full Length Research Paper Fungi from submerged plant debris in aquatic habitats in Iraq Abdullah H. Al-Saadoon and Mustafa N. Al-Dossary* Department of Biology, College of Science, University of Basrah, Iraq. Received 22 November, 2013; Accepted 9 May, 2014 An annotated checklist and table of the substrate type for the past and updated fungal species recorded from various submerged plant debris in aquatic habitats of Iraq are provided. Sixty seven (67) species of freshwater and marine fungi occurring in different types of plant debris collected from various locations of Iraq were registered. These include: 46 species of ascomycota, 19 species of hyphomycetes and two species of coelomycetes. Of these, 11 species were reported for the first time in Iraq. Brief descriptions of the new records are presented. Key words: Fungi, aquatic habitat, Iraq. INTRODUCTION The role of fungi associated with plant debris in aquatic been confined to the work of Abdullah (1983). There are habitats is immense and they are responsible for most of a few isolated records by Abdullah and Abdulkadir the decomposition of organic materials, thus contributing (1987), Abdulkadir and Muhsin (1991), Abdullah and Al- in nutrient regeneration cycles (Rani and Panneerselvam, Saadoon (1994a, b, 1995), Muhsin and Abdulkadir 2009; Wong et al., 1998). Noteworthy, fungal taxa have (1995), Guarro et al. (1996, 1997a, b), Al-Saadoon and been isolated from submerged woody substrata in Abdullah (2001), Muhsin and Khalaf (2002) and Al- freshwater habitats (Shearer, 1993; Goh and Hyde, 1996; Saadoon and Al-Dossary (2010). -
Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´
Hindawi International Journal of Microbiology Volume 2020, Article ID 6582514, 9 pages https://doi.org/10.1155/2020/6582514 Research Article Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´ Eveleise SamiraMartins Canto ,1,2 Ana Clau´ dia AlvesCortez,3 JosianeSantana Monteiro,4 Flavia Rodrigues Barbosa,5 Steven Zelski ,6 and João Vicente Braga de Souza3 1Programa de Po´s-Graduação da Rede de Biodiversidade e Biotecnologia da Amazoˆnia Legal-Bionorte, Manaus, Amazonas, Brazil 2Universidade Federal do Oeste do Para´, UFOPA, Santare´m, Para´, Brazil 3Instituto Nacional de Pesquisas da Amazoˆnia, INPA, Laborato´rio de Micologia, Manaus, Amazonas, Brazil 4Museu Paraense Emilio Goeldi-MPEG, Bele´m, Para´, Brazil 5Universidade Federal de Mato Grosso, UFMT, Sinop, Mato Grosso, Brazil 6Miami University, Department of Biological Sciences, Middletown, OH, USA Correspondence should be addressed to Eveleise Samira Martins Canto; [email protected] and Steven Zelski; [email protected] Received 25 August 2019; Revised 20 February 2020; Accepted 4 March 2020; Published 9 April 2020 Academic Editor: Giuseppe Comi Copyright © 2020 Eveleise Samira Martins Canto et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aquatic ecosystems in tropical forests have a high diversity of microorganisms, including fungi, which -
Pestalotioid Fungi from Restionaceae in the Cape Floral Kingdom
STUDIES IN MYCOLOGY 55: 175–187. 2006. Pestalotioid fungi from Restionaceae in the Cape Floral Kingdom Seonju Lee1*, Pedro W. Crous2 and Michael J. Wingfield1 1Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lunnon Road, Hillcrest, Pretoria 0002, South Africa; 2Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands *Correspondence: Seonju Lee, [email protected] Abstract: Eight pestalotioid fungi were isolated from the Restionaceae growing in the Cape Floral Kingdom of South Africa. Sarcostroma restionis, Truncatella megaspora, T. restionacearum and T. spadicea are newly described. New records include Pestalotiopsis matildae, Sarcostroma lomatiae, Truncatella betulae and T. hartigii. To resolve generic affiliations, phylogenetic analyses were performed on ITS (ITS1, 5.8S, ITS2) and part of 28S rDNA. DNA data support the original generic concept of Truncatella, which encompasses Pestalotiopsis species having 3-septate conidia. The genus Sarcostroma is retained as separate from Seimatosporium. Taxonomic novelties: Pestalotiopsis matildae (Richatt) S. Lee & Crous comb. nov., Truncatella betulae (Morochk.) S. Lee & Crous comb. nov., Sarcostroma restionis S. Lee & Crous sp. nov., Truncatella megaspora S. Lee & Crous sp. nov., Truncatella restionacearum S. Lee & Crous sp. nov., Truncatella spadicea S. Lee & Crous sp. nov. Key words: Fungi imperfecti, fynbos, microfungi, South Africa, systematics. INTRODUCTION MATERIALS AND METHODS The Restionaceae (restios) is a monocotyledonous Isolates family distributed in the Southern Hemisphere, which Field collections were made in Western Cape Province includes more than 30 genera and about 400 species nature reserves and in undisturbed areas of the fynbos (Figs 1–6). In Africa approximately 330 species are during 2000–2002. -
Piedmont Lichen Inventory
PIEDMONT LICHEN INVENTORY: BUILDING A LICHEN BIODIVERSITY BASELINE FOR THE PIEDMONT ECOREGION OF NORTH CAROLINA, USA By Gary B. Perlmutter B.S. Zoology, Humboldt State University, Arcata, CA 1991 A Thesis Submitted to the Staff of The North Carolina Botanical Garden University of North Carolina at Chapel Hill Advisor: Dr. Johnny Randall As Partial Fulfilment of the Requirements For the Certificate in Native Plant Studies 15 May 2009 Perlmutter – Piedmont Lichen Inventory Page 2 This Final Project, whose results are reported herein with sections also published in the scientific literature, is dedicated to Daniel G. Perlmutter, who urged that I return to academia. And to Theresa, Nichole and Dakota, for putting up with my passion in lichenology, which brought them from southern California to the Traingle of North Carolina. TABLE OF CONTENTS Introduction……………………………………………………………………………………….4 Chapter I: The North Carolina Lichen Checklist…………………………………………………7 Chapter II: Herbarium Surveys and Initiation of a New Lichen Collection in the University of North Carolina Herbarium (NCU)………………………………………………………..9 Chapter III: Preparatory Field Surveys I: Battle Park and Rock Cliff Farm……………………13 Chapter IV: Preparatory Field Surveys II: State Park Forays…………………………………..17 Chapter V: Lichen Biota of Mason Farm Biological Reserve………………………………….19 Chapter VI: Additional Piedmont Lichen Surveys: Uwharrie Mountains…………………...…22 Chapter VII: A Revised Lichen Inventory of North Carolina Piedmont …..…………………...23 Acknowledgements……………………………………………………………………………..72 Appendices………………………………………………………………………………….…..73 Perlmutter – Piedmont Lichen Inventory Page 4 INTRODUCTION Lichens are composite organisms, consisting of a fungus (the mycobiont) and a photosynthesising alga and/or cyanobacterium (the photobiont), which together make a life form that is distinct from either partner in isolation (Brodo et al. -
From Pandanus Odorifer (Pandanaceae)
Turkish Journal of Botany Turk J Bot (2017) 41: 107-116 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1606-45 Anthostomelloides krabiensis gen. et sp. nov. (Xylariaceae) from Pandanus odorifer (Pandanaceae) 1,2,3,4,5 2,3,5,6 2 Saowaluck TIBPROMMA , Dinushani Anupama DARANAGAMA , Saranyaphat BOONMEE , 7, 3 1,2,3,4,5 Itthayakorn PROMPUTTHA *, Sureeporn NONTACHAIYAPOOM , Kevin David HYDE 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, P.R. China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand 3 School of Science, Mae Fah Luang University, Chiang Rai, Thailand 4 World Agroforestry Centre, East and Central Asia, Kunming, Yunnan, P.R. China 5 Mushroom Research Foundation, Chiang Mai, Thailand 6 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China 7 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Received: 29.06.2016 Accepted/Published Online: 26.09.2016 Final Version: 17.01.2017 Abstract: An Anthostomella-like taxon was obtained from Pandanus odorifer (Forssk.) Kuntze (Pandanaceae) collected in Krabi Province in Thailand. Morphological data plus phylogenetic analyses of combined ITS, LSU, RPB2, and β-tubulin sequence data clearly separate this Anthostomella-like taxon from other known genera in Xylariaceae. In this paper, we introduce this taxon as a new genus, Anthostomelloides, in the family Xylariaceae, with A. krabiensis as the type. A detailed morphological description, phylogenetic tree, photomicrographs of A. krabiensis, keys to Anthostomella-like genera, and a comparison of A. -
Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
(topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota. -
Butlletí 82 (2018)
82 Butlletí de la Institució Catalana d’Història Natural 82 Barcelona 2018 Butlletí de la Institució Catalana d’HistòriaButlletí de la Institució Catalana Natural 2018 Butlletí de la Institució Catalana d’Història Natural, 82: 3-4. 2018 ISSN 2013-3987 (online edition): ISSN: 1133-6889 (print edition)3 nota BREU NOTA BREU Torymus sinensis Kamijo, 1982 (Hymenoptera, Torymidae) has arrived in Spain Torymus sinensis Kamijo, 1982 (Hymenoptera, Torymidae) ha arribat a Espanya Juan Luis Jara-Chiquito* & Juli Pujade-Villar* * Universitat de Barcelona. Facultat de Biologia. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (Secció invertebrats). Diagonal, 643. 08028 Barcelona (Catalunya). A/e: [email protected], [email protected] Rebut: 25.11.2017. Acceptat: 12.12.2017. Publicat: 08.01.2018 a b Figure 1. SEM pictures of Torymus sinensis collected in Catalonia: (a) male antenna, (b) female habitus. Dryocosmus kuriphilus Yasumatsu, 1951 (Hym., Cynipi- untries took this initiative as well: France from 2011-2013 dae), an Oriental pest in chestnut (Castanea spp), was detect- (Borowiec et al., 2014), Croatia and Hungary in 2014-2015 ed for the first time in the Iberian Peninsula in 2012 (Pujade- (Matoševič et al., 2015) and Slovenia in 2015 (Matošević et Villar et al., 2013). It was introduced accidentally in Europe, al., 2015). Once released this species does not only occupy via Italy in 2002, according to (Brussino et al., 2002). the area of liberation but spreads into others due to its gre- Torymus sinensis Kamijo, 1982 (Fig. 1) is a parasitoid, nati- at mobility. There have been some test-releases in Spain and ve from China, and a specific species attackingD.