1 Evidence of the complexity of aerosol transport in the lower 2 troposphere on the Namibian coast during AEROCLO-sA 3 Patrick Chazette1, Cyrille Flamant2, Julien Totems1, Marco Gaetani2,3, Gwendoline Smith1,3, 4 Alexandre Baron1, Xavier Landsheere3, Karine Desboeufs3, Jean-François Doussin3, and Paola 5 Formenti3 6 1Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Laboratoire mixte CEA-CNRS-UVSQ, UMR 7 CNRS 1572, CEA Saclay, 91191 Gif-sur-Yvette, France 8 2LATMOS/IPSL, Sorbonne Université, CNRS, UVSQ, Paris, France 9 3 Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) UMR CNRS 7583, Université Paris-Est- 10 Créteil, Université de Paris, Institut Pierre Simon Laplace, Créteil, France. 11 Correspondence to: Patrick Chazette (
[email protected]) 12 Abstract. The evolution of the vertical distribution and optical properties of aerosols in the free troposphere, above 13 stratocumulus, is characterized for the first time over the Namibian coast, a region where uncertainties on aerosol- 14 cloud coupling in climate simulations are significant. We show the high variability of atmospheric aerosol 15 composition in the lower and middle troposphere during the AEROCLO-sA field campaign (22 August - 12 16 September 2017) around the Henties Bay supersite, using a combination of ground-based, airborne and space- 17 borne lidar measurements. Three distinct periods of 4 to 7 days are observed, associated with increasing aerosol 18 loads (aerosol optical thickness at 550 nm ranging from ~ 0.2 to ~0.7), as well as increasing lofted aerosol layer 19 depth and top altitude. Aerosols are observed up to 6 km above mean sea level during the later period.