Empirical Mode Decomposition Analysis of Random Processes in the Solar Atmosphere D

Total Page:16

File Type:pdf, Size:1020Kb

Empirical Mode Decomposition Analysis of Random Processes in the Solar Atmosphere D A&A 592, A153 (2016) Astronomy DOI: 10.1051/0004-6361/201628306 & c ESO 2016 Astrophysics Empirical mode decomposition analysis of random processes in the solar atmosphere D. Y. Kolotkov1, S. A. Anfinogentov1, and V. M. Nakariakov1; 2; 3 1 Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL, UK e-mail: [email protected] 2 School of Space Research, Kyung Hee University, Yongin, 446-701 Gyeonggi, Korea 3 Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140 St Petersburg, Russia Received 13 February 2016 / Accepted 10 June 2016 ABSTRACT Context. Coloured noisy components with a power law spectral energy distribution are often shown to appear in solar signals of various types. Such a frequency-dependent noise may indicate the operation of various randomly distributed dynamical processes in the solar atmosphere. Aims. We develop a recipe for the correct usage of the empirical mode decomposition (EMD) technique in the presence of coloured noise, allowing for clear distinguishing between quasi-periodic oscillatory phenomena in the solar atmosphere and superimposed random background processes. For illustration, we statistically investigate extreme ultraviolet (EUV) emission intensity variations observed with SDO/AIA in the coronal (171 Å), chromospheric (304 Å), and upper photospheric (1600 Å) layers of the solar atmo- sphere, from a quiet sun and a sunspot umbrae region. Methods. EMD has been used for analysis because of its adaptive nature and essential applicability to the processing non-stationary and amplitude-modulated time series. For the comparison of the results obtained with EMD, we use the Fourier transform technique as an etalon. Results. We empirically revealed statistical properties of synthetic coloured noises in EMD, and suggested a scheme that allows for the detection of noisy components among the intrinsic modes obtained with EMD in real signals. Application of the method to the solar EUV signals showed that they indeed behave randomly and could be represented as a combination of different coloured noises characterised by a specific value of the power law indices in their spectral energy distributions. On the other hand, 3-min oscillations in the analysed sunspot were detected to have energies significantly above the corresponding noise level. Conclusions. The correct accounting for the background frequency-dependent random processes is essential when using EMD for analysis of oscillations in the solar atmosphere. For the quiet sun region the power law index was found to increase with height above the photosphere, indicating that the higher frequency processes are trapped deeper in the quiet sun atmosphere. In contrast, lower levels of the sunspot umbrae were found to be characterised by higher values of the power law index, meaning the domination of lower frequencies deep inside the sunspot atmosphere. Comparison of the EMD results with those obtained with the Fourier transform showed good consistency, justifying the applicability of EMD. Key words. Sun: atmosphere – Sun: photosphere – Sun: chromosphere – Sun: corona – sunspots – methods: data analysis 1. Introduction physical nature, for example, they can be caused by instrumental artefacts or by random processes operating in the solar atmo- The solar atmosphere evidently shows a wide range of peri- sphere. Interestingly, in the majority of previous studies these odicities detected throughout the whole electromagnetic spec- modes were usually ignored and simply disregarded in analysis. trum. They have different physical nature and causes, and their However, recent works have shown that coloured noises can be periods vary from a fraction of second up to several years, recognised in solar and stellar flare light curves with the Fourier and even to centuries. Some examples of the oscillatory pro- power spectrum, and accumulate a significant part of a signal’s cesses responsible for the periodicities are the 11 yr solar spectral energy. They are manifested as a power-law-like Fourier cycle, the so-called quasi-biennial oscillations, the helioseis- power spectra, and seem to be intrinsic features of many obser- mic variations (see Hathaway 2010; Bazilevskaya et al. 2014; vational data sets detected by different instruments. For exam- Christensen-Dalsgaard 2002, and references therein for recent ple, Inglis et al.(2015) considered flare signals exhibiting QPP comprehensive reviews), magnetohydrodynamic waves and os- detected with the PROBA2 (Large Yield Radiometer), Fermi cillations in different plasma structures of the solar atmosphere (Gamma-ray Burst Monitor), Nobeyama Radioheliograph, and (see De Moortel & Nakariakov 2012; Liu & Ofman 2014; Yohkoh (HXT) instruments. They found that the majority of Jess et al. 2015), and various quasi-periodic pulsations (QPP) cases considered could be described by a power law in the appearing in solar flare light curves (Nakariakov & Melnikov Fourier power spectra. Signatures of strong noisy components 2009; Kupriyanova et al. 2010; Simões et al. 2015). having power-law-like Fourier power spectral densities were In addition to clear oscillations, broadband modes usually also detected in Gruber et al.(2011), where the RHESSI and associated with noise often appear in solar signals of various Fermi (Gamma-ray Burst Monitor) observations of solar flares types too. These noisy components may have basically different were considered. Application of the wavelet transform modulus Article published by EDP Sciences A153, page 1 of9 A&A 592, A153 (2016) maxima method showed the multifractal spectra of the tempo- made in Franzke(2009), revealing noise-like properties of the ral variation of the X-ray emission in solar flares (McAteer et al. Earth’s climate data. 2007). In this paper we extend the studies of Wu & Huang(2004) The interest in the coloured noise in the solar atmosphere and Franzke(2009), and reveal similar empirical properties of is connected with its possible link with various dynamical phe- coloured noises in EMD, allowing for arbitrary indices in power nomena. For example, in the case of QPP in flares a frequency- law dependences of their power spectral densities in application dependent noise may be associated with repetitive magnetic re- to the solar atmosphere. We show that coloured noises can be connection (e.g. Bárta et al. 2011). In the case of the quiet Sun, successfully described by the chi-squared distribution too. How- the evolution of the noise with height may reveal the physical ever the parameter of the distribution function, the number of processes responsible for the generation, dissipation and evolu- degrees of freedom (DoF), needs to be adjusted accordingly tion of magnetohydrodynamic waves, turbulence, and episodic for each sort of noise. For illustration of the reliability of the energy releases. Recently, Ireland et al.(2015) studied mean method, we adapt this EMD-based technique for analysing so- Fourier spectra of various regions of the solar corona observed at lar extreme ultraviolet (EUV) data sets obtained with SDO/AIA, testing them in the manner described above for the presence of the 171 Å and 193 Å wavelengths, and found that they can be de- randomly distributed dynamical processes. Historically, obser- scribed by a power law at lower frequencies, tailing to a flat spec- vations of the oscillatory processes in the atmosphere of the Sun trum at higher frequencies, plus a Gaussian-shaped contribution attract a great interest among the research community. In particu- specific for different regions of the corona. Also, understanding lar, the high-frequency tails of solar dynamical spectra, obtained of the noise is important for the development of automated detec- from the lower layers of the solar atmosphere, were found to tion techniques (e.g. Nakariakov & King 2007; Sych et al. 2010; vary significantly with the height and magnetic properties of the Ireland et al. 2010; Martens et al. 2012). region (see, e.g. Evans et al. 1963; Orrall 1966; Woods & Cram In addition to the Fourier and wavelet techniques, another 1981; Deubner & Fleck 1990). In this paper we use the data ob- spectral method being actively used for the analysis of solar tained with the modern SDO/AIA instrument. Due to the ad- signals is the Hilbert-Huang Transform technique developed in vanced combination of this data’s spatial and temporal resolu- Huang et al.(1998), Huang & Wu(2008). It is based upon the tions and high values of the signal-to-noise ratio, it allows us to empirical mode decomposition (EMD) of the signal of interest investigate the higher coronal altitudes of the solar atmosphere into the basis derived directly from the data by iterative search- in the EUV band and directly compare their dynamical spectra ing for the local time scale naturally appearing in the signal. Be- with the chromospheric and photospheric layers. We show that ing not restricted by an a priori assignment of the basis func- application of this EMD-based noise-test to SDO/AIA data sets tion, EMD operates adaptively and, hence, is essentially suitable revealed that they mainly consist of random signals represented for processing non-stationary and non-linear time series typical by a combination of the white noise at shorter-period spectral for the solar signals. These unique properties of EMD attracted components and the reddish noises at longer periods. a growing interest in the application of this technique to anal- ysis of dynamical phenomena on the Sun. This technique has already been successfully applied to solar signals. For exam- 2. Methodology and properties of coloured noises ple, anharmonic and multi-modal structures of solar QPP were in EMD revealed with EMD in Nakariakov et al.(2010), Kolotkov et al. Power spectral density S of coloured noises as a function of (2015b), detailed two-dimensional information about a propa- α gating and a standing wave in a coronal loop was obtained with frequency, f can be written as S = C= f , where C is a con- EMD in Terradas et al.(2004), periodicities associated with the stant which can be reduced to unity by appropriate normalisa- 11 yr solar cycle were investigated with EMD in Kolotkov et al.
Recommended publications
  • Measurement Techniques of Ultra-Wideband Transmissions
    Rec. ITU-R SM.1754-0 1 RECOMMENDATION ITU-R SM.1754-0* Measurement techniques of ultra-wideband transmissions (2006) Scope Taking into account that there are two general measurement approaches (time domain and frequency domain) this Recommendation gives the appropriate techniques to be applied when measuring UWB transmissions. Keywords Ultra-wideband( UWB), international transmissions, short-duration pulse The ITU Radiocommunication Assembly, considering a) that intentional transmissions from devices using ultra-wideband (UWB) technology may extend over a very large frequency range; b) that devices using UWB technology are being developed with transmissions that span numerous radiocommunication service allocations; c) that UWB technology may be integrated into many wireless applications such as short- range indoor and outdoor communications, radar imaging, medical imaging, asset tracking, surveillance, vehicular radar and intelligent transportation; d) that a UWB transmission may be a sequence of short-duration pulses; e) that UWB transmissions may appear as noise-like, which may add to the difficulty of their measurement; f) that the measurements of UWB transmissions are different from those of conventional radiocommunication systems; g) that proper measurements and assessments of power spectral density are key issues to be addressed for any radiation, noting a) that terms and definitions for UWB technology and devices are given in Recommendation ITU-R SM.1755; b) that there are two general measurement approaches, time domain and frequency domain, with each having a particular set of advantages and disadvantages, recommends 1 that techniques described in Annex 1 to this Recommendation should be considered when measuring UWB transmissions. * Radiocommunication Study Group 1 made editorial amendments to this Recommendation in the years 2018 and 2019 in accordance with Resolution ITU-R 1.
    [Show full text]
  • Quantum Noise and Quantum Measurement
    Quantum noise and quantum measurement Aashish A. Clerk Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 1 Contents 1 Introduction 1 2 Quantum noise spectral densities: some essential features 2 2.1 Classical noise basics 2 2.2 Quantum noise spectral densities 3 2.3 Brief example: current noise of a quantum point contact 9 2.4 Heisenberg inequality on detector quantum noise 10 3 Quantum limit on QND qubit detection 16 3.1 Measurement rate and dephasing rate 16 3.2 Efficiency ratio 18 3.3 Example: QPC detector 20 3.4 Significance of the quantum limit on QND qubit detection 23 3.5 QND quantum limit beyond linear response 23 4 Quantum limit on linear amplification: the op-amp mode 24 4.1 Weak continuous position detection 24 4.2 A possible correlation-based loophole? 26 4.3 Power gain 27 4.4 Simplifications for a detector with ideal quantum noise and large power gain 30 4.5 Derivation of the quantum limit 30 4.6 Noise temperature 33 4.7 Quantum limit on an \op-amp" style voltage amplifier 33 5 Quantum limit on a linear-amplifier: scattering mode 38 5.1 Caves-Haus formulation of the scattering-mode quantum limit 38 5.2 Bosonic Scattering Description of a Two-Port Amplifier 41 References 50 1 Introduction The fact that quantum mechanics can place restrictions on our ability to make measurements is something we all encounter in our first quantum mechanics class. One is typically presented with the example of the Heisenberg microscope (Heisenberg, 1930), where the position of a particle is measured by scattering light off it.
    [Show full text]
  • Wavelets T( )= T( ) G F( ) F ,T ( )D F
    Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) Wavelets Recall: we can choose ! f (t ) as basis on which we expand, ie: y(t ) = " y f (t ) = "G f ! f (t ) f f ! f may be orthogonal – chosen for "appropriate" properties. # This is equivalent to the transform: y(t ) = $ G( f )!( f ,t )d f "# We have discussed !( f ,t ) = e2!ift for the Fourier transform. Now choose different Kernel- in particular to achieve space-time localization. Main advantage- offers complete space-time localization (which may deal with issues of non- stationarity) whilst retaining scale invariant property of the ! . First, why not just use (windowed) short time DFT to achieve space-time localization? Wavelets- we can optimize i.e. have a short time interval at high frequencies, and a long time interval at low frequencies; i.e. simple Wavelet can in principle be constructed as a band- pass Fourier process. A subset of wavelets are orthogonal (energy preserving c.f Parseval theorem) and have inverse transforms. Finite time domain DFT Wavelet- note scale parameter s 1 Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) So at its simplest, a wavelet transform is simply a collection of windowed band pass filters applied to the Fourier transform- and this is how wavelet transforms are often computed (as in Matlab). However we will want to impose some desirable properties, invertability (orthogonality) and completeness. Continuous Fourier transform: " m 1 T / 2 2!ifmt !2!ifmt x(t ) = Sme , fm = Sm = x(t )e dt # "!T / 2 m=!" T T ! i( n!m)x with orthogonality: e dx = 2!"mn "!! " x(t ) = # S( f )e2!ift df continuous Fourier transform pair: !" " S( f ) = # x(t )e!2!ift dt !" Continuous Wavelet transform: $ W !,a = x t " * t dt ( ) % ( ) ! ,a ( ) #$ 1 $ & $ ) da x(t) = ( W (!,a)"! ! ,a d! + 2 C % % a " 0 '#$ * 1 $ t # " ' Where the mother wavelet is ! " ,a (t) = ! & ) where ! is the shift parameter and a a % a ( is the scale (dilation) parameter (we can generalize to have a scaling function a(t)).
    [Show full text]
  • The Power Spectral Density of Phase Noise and Jitter: Theory, Data Analysis, and Experimental Results by Gil Engel
    AN-1067 APPLICATION NOTE One Technology Way • P. O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com The Power Spectral Density of Phase Noise and Jitter: Theory, Data Analysis, and Experimental Results by Gil Engel INTRODUCTION GENERAL DESCRIPTION Jitter on analog-to-digital and digital-to-analog converter sam- There are numerous techniques for generating clocks used in pling clocks presents a limit to the maximum signal-to-noise electronic equipment. Circuits include R-C feedback circuits, ratio that can be achieved (see Integrated Analog-to-Digital and timers, oscillators, and crystals and crystal oscillators. Depend- Digital-to-Analog Converters by van de Plassche in the References ing on circuit requirements, less expensive sources with higher section). In this application note, phase noise and jitter are defined. phase noise (jitter) may be acceptable. However, recent devices The power spectral density of phase noise and jitter is developed, demand better clock performance and, consequently, more time domain and frequency domain measurement techniques costly clock sources. Similar demands are placed on the spectral are described, limitations of laboratory equipment are explained, purity of signals sampled by converters, especially frequency and correction factors to these techniques are provided. The synthesizers used as sources in the testing of current higher theory presented is supported with experimental results applied performance converters. In the following section, definitions to a real world problem. of phase noise and jitter are presented. Then a mathematical derivation is developed relating phase noise and jitter to their frequency representation.
    [Show full text]
  • ETSI EN 302 500-1 V1.1.1 (2007-02) European Standard (Telecommunications Series)
    ETSI EN 302 500-1 V1.1.1 (2007-02) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD) using Ultra WideBand (UWB) technology; Location Tracking equipment operating in the frequency range from 6 GHz to 8,5 GHz; Part 1: Technical characteristics and test methods 2 ETSI EN 302 500-1 V1.1.1 (2007-02) Reference DEN/ERM-TG31C-004-1 Keywords radio, SRD, UWB, regulation, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • Fourier Transform, Parseval's Theoren, Autocorrelation and Spectral
    ELG3175 Introduction to Communication Systems Fourier transform, Parseval’s theoren, Autocorrelation and Spectral Densities Fourier Transform of a Periodic Signal • A periodic signal can be expressed as a complex exponential Fourier series. • If x(t) is a periodic signal with period T, then : n ∞ j2π t T x(t) = ∑ X n e n=−∞ • Its Fourier Transform is given by: n n ∞ j2π t ∞ j2π t ∞ F T F T X ( f ) = ∑ X ne = ∑ X n e = ∑ X nδ ()f − nf o n=−∞ n=−∞ n=−∞ Lecture 4 Example x(t ) A … … 0.25 0.5 0.75 t -A ∞ 2A ∞ 2A x(t) = ∑ e j4πnt = ∑ − j e j4πnt n=−∞ jπn n=−∞ πn n isodd n isodd ∞ 2A X ( f ) = ∑ − j δ ()f − 2n n=−∞ πn n isodd Lecture 4 Example Continued |X(f)| 2A/π 2A/π 2A/3 π 2A/3 π 2A/5 π 2A/5 π -10 -6 -2 2 6 10 f Lecture 4 Energy of a periodic signal • If x(t) is periodic with period T, the energy on one period is: | ( |) 2 E p = ∫ x t dt T • The energy on N periods is EN = NE p. • The average normalized energy is E = lim NE p = ∞ N→∞ • Therefore periodic signals are never energy signals. Lecture 4 Average normalized power of periodic signals • The power of x(t) on one period is : 1 P = | x(t |) 2 dt p T ∫ T • And it’s power on N periods is : iT 1 1 N 1 1 P = | x(t |) 2 dt = | x(t |) 2 dt = × NP = P Np NT ∫ N ∑ T ∫ N p p NT i=1 (i− )1 T • It’s average normalized power is therefore P = lim PNp = Pp N →∞ • Therefore, for a periodic signal, its average normalized power is equal to the power over one period.
    [Show full text]
  • Final Draft ETSI EN 302 288-1 V1.3.1 (2007-04) European Standard (Telecommunications Series)
    Final draft ETSI EN 302 288-1 V1.3.1 (2007-04) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices; Road Transport and Traffic Telematics (RTTT); Short range radar equipment operating in the 24 GHz range; Part 1: Technical requirements and methods of measurement 2 Final draft ETSI EN 302 288-1 V1.3.1 (2007-04) Reference REN/ERM-TG31B-004-1 Keywords radar, radio, RTTT, SRD, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • SPECTRAL PARAMETER ESTIMATION for LINEAR SYSTEM IDENTIFICATION, by C
    I rtüii "inali*·'*!' ' *' EUR 4479 e i ■i$m\ SPECTRAL PARAMETI WÊà m ΐίίΒ-1« tum A.C. Ü léii**1 BE ii \>mm.m ' ä-'ÜBit-f , ,^. MWfj 1970 Blip Η ·■: Joint Nuclear Research Center Ispra Establishment - Italy Reactor Physics Department KesearcResearcnh KeacrorReactorss f tø pf IMI? Iiiiínílíi^'lliw^i»·*»!!!^ liillit, A A A K, f A this document was prepared under the sponsorship ot th of the European Communities^i.fttMä'iwi fiSt" «Hf Neither the Commission of the European Communities, its contractors nor ™ fiRá waëïiwmSm any person acting on their behalf : make any warranty or representation, express or implied, with respect to the accuracy, completeness or usefulness of the information contained in this document, or that the use of 'any information, apparatus, method or process disclosed in this document may not infringe privately owned rights; or fWJftJSû llåf , „ u , , , , 1»Ü1 froassumm the ean usy e liabilitof anyy witinformationh respect, tapparatuso the use, methoof, ord foor r damageprocesss discloseresultindg in this document. fi Aie ιΐϋΐ •sír'5¿i'}ll! .¡vit• This report is on sale at the addresses listed on cover page 4 fS'-iEuflfi'piîMLsfli'iiÎMiW'1 'J*' r'Urt^íSlTSfltislHiilMiMHjTÍ"^ ut the price of FF 9,45 FB 85- DM 6,20 Lit 1.060 FI. 6,20 ïah When ordering, please quote the EUR number and the title, which are indicated on the cover of each report 1 WMpttIcU *v*r 1 BE sfliilìl »l^ifie KS? ί MM Printed by Smeets, Brussels LuxembourouTg, , May 1970 -h Vlililí u#feeItó1 ψ4 K*l*LrV,;íld This document was reproduced on the basis of the best available copy »Av tfwi< ¡;KLí W* EUR 4479 e SPECTRAL PARAMETER ESTIMATION FOR LINEAR SYSTEM IDENTIFICATION, by C.
    [Show full text]
  • The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F
    Application Note 041 The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey Introduction The Fast Fourier Transform (FFT) and the power spectrum are powerful tools for analyzing and measuring signals from plug-in data acquisition (DAQ) devices. For example, you can effectively acquire time-domain signals, measure the frequency content, and convert the results to real-world units and displays as shown on traditional benchtop spectrum and network analyzers. By using plug-in DAQ devices, you can build a lower cost measurement system and avoid the communication overhead of working with a stand-alone instrument. Plus, you have the flexibility of configuring your measurement processing to meet your needs. To perform FFT-based measurement, however, you must understand the fundamental issues and computations involved. This application note serves the following purposes. • Describes some of the basic signal analysis computations, • Discusses antialiasing and acquisition front ends for FFT-based signal analysis, • Explains how to use windows correctly, • Explains some computations performed on the spectrum, and • Shows you how to use FFT-based functions for network measurement. The basic functions for FFT-based signal analysis are the FFT, the Power Spectrum, and the Cross Power Spectrum. Using these functions as building blocks, you can create additional measurement functions such as frequency response, impulse response, coherence, amplitude spectrum, and phase spectrum. FFTs and the Power Spectrum are useful for measuring the frequency content of stationary or transient signals. FFTs produce the average frequency content of a signal over the entire time that the signal was acquired. For this reason, you should use FFTs for stationary signal analysis or in cases where you need only the average energy at each frequency line.
    [Show full text]
  • Spectral Analysis and Time Series
    SSppeecctrtraall AAnnaallyyssiiss aanndd TTiimmee SSeerriieess Andreas Lagg Parrt II:: fundameentntaallss Parrt IIII: FourFourieerr sseerriiess Parrt IIIII: WWavvelettss on timme sseerriieess cllassiification definitionion why wavelet prob. densiity func. method transforms? auto-correlatilation properties fundamentals: FT, STFT and power spectral densiity convolutilution resolutionon prproblobleemmss cross-ccororrrelatiationn correlatiations multiresolution appliicationsons lleakage / wiindowiing analysiis: CWTT pre-processiing iirregular griid DWT samplinging noise removal trend removal EExxeercrcisiseess A.. Lagg ± Spectral Analylysisis BaBassiicc ddeessccrriippttiioonn ooff pphhyyssiiccaall ddaattaa determiinistic: descriibed by expliicciitt mmathemathematiaticalal rrelelatiationon k xt=X cos t t n nono determiinistic: no way to predict an exact value at a future instant of time n d e t e r m A.. Lagg ± Spectral Analylysisis ii n ii s t ii c CCllaassssiiffiiccaattiioonnss ooff ddeetteerrmmiinniissttiicc ddaattaa Determiinistic Perioiodic Nonperiiodicic Siinusoidaldal Complexex Periiodic Allmost perioiodic Transiient A.. Lagg ± Spectral Analylysisis SiSinnuussooiiddaall ddaattaa xt=X sin2 f 0 t T =1/ f 0 time history frequency spectrogrogram A.. Lagg ± Spectral Analylysisis CCoommpplleexx ppeerriiooddiicc ddaattaa xt=xt±nT n=1,2,3,... a xt = 0 a cos 2 n f t b sin 2 n f t 2 ∑ n 1 n 1 ((T = fundamental periiod) time history frequency spectrogrogram A.. Lagg ± Spectral Analylysisis AlAlmmoosstt ppeerriiooddiicc ddaattaa xt=X 1 sin2 t1 X 2 sin3t2 X 3 sin50 t3 no highest common diviisoror --> iinfinfininitelyy long periiodod TT time history frequency spectrogrogram A.. Lagg ± Spectral Analylysisis TrTraannssiieenntt nnoonn--ppeerriiooddiicc ddaattaa alll non-periiodic data other than almost periiodic data Ae−at t≥0 xt= { 0 t0 Ae−at cos bt t≥0 xt= { 0 t0 A c≥t≥0 xt= { 0 ct0 A.
    [Show full text]
  • Spectral Density Estimation for Nonstationary Data with Nonzero Mean Function Anna E
    Spectral density estimation for nonstationary data with nonzero mean function Anna E. Dudek, Lukasz Lenart To cite this version: Anna E. Dudek, Lukasz Lenart. Spectral density estimation for nonstationary data with nonzero mean function. 2021. hal-02442913v2 HAL Id: hal-02442913 https://hal.archives-ouvertes.fr/hal-02442913v2 Preprint submitted on 1 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spectral density estimation for nonstationary data with nonzero mean function Anna E. Dudek∗ Department of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland and Lukasz Lenart y Department of Mathematics, Cracow University of Economics, ul. Rakowicka 27, 31-510 Cracow, Poland March 1, 2021 Abstract We introduce a new approach for nonparametric spectral density estimation based on the subsampling technique, which we apply to the important class of nonstation- ary time series. These are almost periodically correlated sequences. In contrary to existing methods our technique does not require demeaning of the data. On the simulated data examples we compare our estimator of spectral density function with the classical one. Additionally, we propose a modified estimator, which allows to reduce the leakage effect.
    [Show full text]
  • Chapter 8 Spectrum Analysis
    CHAPTER 8 SPECTRUM ANALYSIS INTRODUCTION We have seen that the frequency response function T( j ) of a system characterizes the amplitude and phase of the output signal relative to that of the input signal for purely harmonic (sine or cosine) inputs. We also know from linear system theory that if the input to the system is a sum of sines and cosines, we can calculate the steady-state response of each sine and cosine separately and sum up the results to give the total response of the system. Hence if the input is: k 10 A0 x(t) Bk sin k t k (1) 2 k1 then the steady state output is: k 10 A0 y(t) T(j0) BT(jk k )sin k t k T(j k ) (2) 2 k1 Note that the constant term, a term of zero frequency, is found from multiplying the constant term in the input by the frequency response function evaluated at ω = 0 rad/s. So having a sum of sines and cosines representation of an input signal, we can easily predict the steady state response of the system to that input. The problem is how to put our signal in that sum of sines and cosines form. For a periodic signal, one that repeats exactly every, say, T seconds, there is a decomposition that we can use, called a Fourier Series decomposition, to put the signal in this form. If the signals are not periodic we can extend the Fourier Series approach and do another type of spectral decomposition of a signal called a Fourier Transform.
    [Show full text]