ETSI EN 302 500-1 V1.1.1 (2007-02) European Standard (Telecommunications Series)

Total Page:16

File Type:pdf, Size:1020Kb

ETSI EN 302 500-1 V1.1.1 (2007-02) European Standard (Telecommunications Series) ETSI EN 302 500-1 V1.1.1 (2007-02) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD) using Ultra WideBand (UWB) technology; Location Tracking equipment operating in the frequency range from 6 GHz to 8,5 GHz; Part 1: Technical characteristics and test methods 2 ETSI EN 302 500-1 V1.1.1 (2007-02) Reference DEN/ERM-TG31C-004-1 Keywords radio, SRD, UWB, regulation, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2007. All rights reserved. DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. ETSI 3 ETSI EN 302 500-1 V1.1.1 (2007-02) Contents Intellectual Property Rights................................................................................................................................5 Foreword.............................................................................................................................................................5 1 Scope ........................................................................................................................................................7 2 References ................................................................................................................................................7 3 Definitions, symbols and abbreviations ...................................................................................................8 3.1 Definitions..........................................................................................................................................................8 3.2 Symbols..............................................................................................................................................................8 3.3 Abbreviations .....................................................................................................................................................8 4 Technical requirement specifications.......................................................................................................9 4.1 General requirements .........................................................................................................................................9 4.2 Presentation of equipment for testing purposes..................................................................................................9 4.2.1 Choice of model for testing ..........................................................................................................................9 4.2.1.1 Auxiliary test equipment.........................................................................................................................9 4.2.1.2 Declarations by the provider ...................................................................................................................9 4.3 Mechanical and electrical design........................................................................................................................9 4.3.1 General..........................................................................................................................................................9 4.3.2 Controls ........................................................................................................................................................9 4.3.3 Transmitter shut-off facility..........................................................................................................................9 4.3.4 Marking ......................................................................................................................................................10 4.3.4.1 Equipment identification.......................................................................................................................10 4.3.4.2 Additional information for the user.......................................................................................................10 4.4 Other device emissions.....................................................................................................................................10 5 Test conditions, power sources and ambient temperatures ....................................................................10 5.1 Normal and extreme test conditions .................................................................................................................10 5.2 Test power source.............................................................................................................................................10 5.2.1 External test power source..........................................................................................................................11 5.2.2 Internal test power source ...........................................................................................................................11 5.3 Normal test conditions......................................................................................................................................11 5.3.1 Normal temperature and humidity..............................................................................................................11 5.3.2 Normal test power source ...........................................................................................................................11 5.3.2.1 Mains voltage........................................................................................................................................11 5.3.2.2 Regulated lead-acid battery power sources ...........................................................................................11 5.3.2.3 Other power sources..............................................................................................................................11 6 General conditions..................................................................................................................................12 6.1 Normal test signals ...........................................................................................................................................12 6.2 Test sites and general arrangements for radiated measurements......................................................................12 6.3 Modes of operation of the transmitter ..............................................................................................................12 7 Interpretation of results ..........................................................................................................................12 7.1 Measurement uncertainty .................................................................................................................................12 7.1.1 Measurement uncertainty is equal to or less than maximum acceptable uncertainty..................................13 7.1.2 Measurement uncertainty is greater than maximum acceptable uncertainty...............................................13 7.2 Other emissions from device circuitry..............................................................................................................14 8 Methods of measurement and limits for transmitter parameters ............................................................14 8.1 General .............................................................................................................................................................14 8.2 Maximum mean e.i.r.p. spectral density...........................................................................................................14 8.2.1 Definition....................................................................................................................................................14 8.2.2 Methods of measurement............................................................................................................................14 8.2.3 Limits..........................................................................................................................................................15
Recommended publications
  • Measurement Techniques of Ultra-Wideband Transmissions
    Rec. ITU-R SM.1754-0 1 RECOMMENDATION ITU-R SM.1754-0* Measurement techniques of ultra-wideband transmissions (2006) Scope Taking into account that there are two general measurement approaches (time domain and frequency domain) this Recommendation gives the appropriate techniques to be applied when measuring UWB transmissions. Keywords Ultra-wideband( UWB), international transmissions, short-duration pulse The ITU Radiocommunication Assembly, considering a) that intentional transmissions from devices using ultra-wideband (UWB) technology may extend over a very large frequency range; b) that devices using UWB technology are being developed with transmissions that span numerous radiocommunication service allocations; c) that UWB technology may be integrated into many wireless applications such as short- range indoor and outdoor communications, radar imaging, medical imaging, asset tracking, surveillance, vehicular radar and intelligent transportation; d) that a UWB transmission may be a sequence of short-duration pulses; e) that UWB transmissions may appear as noise-like, which may add to the difficulty of their measurement; f) that the measurements of UWB transmissions are different from those of conventional radiocommunication systems; g) that proper measurements and assessments of power spectral density are key issues to be addressed for any radiation, noting a) that terms and definitions for UWB technology and devices are given in Recommendation ITU-R SM.1755; b) that there are two general measurement approaches, time domain and frequency domain, with each having a particular set of advantages and disadvantages, recommends 1 that techniques described in Annex 1 to this Recommendation should be considered when measuring UWB transmissions. * Radiocommunication Study Group 1 made editorial amendments to this Recommendation in the years 2018 and 2019 in accordance with Resolution ITU-R 1.
    [Show full text]
  • Maintenance of Remote Communication Facility (Rcf)
    ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO.
    [Show full text]
  • Quantum Noise and Quantum Measurement
    Quantum noise and quantum measurement Aashish A. Clerk Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 1 Contents 1 Introduction 1 2 Quantum noise spectral densities: some essential features 2 2.1 Classical noise basics 2 2.2 Quantum noise spectral densities 3 2.3 Brief example: current noise of a quantum point contact 9 2.4 Heisenberg inequality on detector quantum noise 10 3 Quantum limit on QND qubit detection 16 3.1 Measurement rate and dephasing rate 16 3.2 Efficiency ratio 18 3.3 Example: QPC detector 20 3.4 Significance of the quantum limit on QND qubit detection 23 3.5 QND quantum limit beyond linear response 23 4 Quantum limit on linear amplification: the op-amp mode 24 4.1 Weak continuous position detection 24 4.2 A possible correlation-based loophole? 26 4.3 Power gain 27 4.4 Simplifications for a detector with ideal quantum noise and large power gain 30 4.5 Derivation of the quantum limit 30 4.6 Noise temperature 33 4.7 Quantum limit on an \op-amp" style voltage amplifier 33 5 Quantum limit on a linear-amplifier: scattering mode 38 5.1 Caves-Haus formulation of the scattering-mode quantum limit 38 5.2 Bosonic Scattering Description of a Two-Port Amplifier 41 References 50 1 Introduction The fact that quantum mechanics can place restrictions on our ability to make measurements is something we all encounter in our first quantum mechanics class. One is typically presented with the example of the Heisenberg microscope (Heisenberg, 1930), where the position of a particle is measured by scattering light off it.
    [Show full text]
  • Technical Characteristics for Telemetry, Tracking and Command in the Space Operation Service Below 1 Ghz for Non-GSO Satellites with Short Duration Missions
    Report ITU-R SA.2426-0 (09/2018) Technical characteristics for telemetry, tracking and command in the space operation service below 1 GHz for non-GSO satellites with short duration missions SA Series Space applications and meteorology ii Rep. ITU-R SA.2426-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Ecc Report 157 the Impact of Spurious Emissions Of
    ECC REPORT 157 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC REPORT 157 THE IMPACT OF SPURIOUS EMISSIONS OF RADARS AT 2.8, 5.6 AND 9.0 GHz ON OTHER RADIOCOMMUNICATION SERVICES/SYSTEMS Cardiff, January 2011 ECC REPORT 157 Page 2 0 EXECUTIVE SUMMARY This ECC Report presents detailed analysis of the impact of fixed radiodetermination systems on other services/systems (i.e. Fixed service (P-P application), Mobile service (RLAN in 5 GHz band) and Radioastronomy service) operating in adjacent or different bands. This analysis was done on a theoretical approach, but results of some measurements of existing filtering solutions were also considered. A number of cases have been considered of major importance for defining levels of unwanted emissions in the spurious domain giving confidence of reasonably low occurrence probability of interference. Particular attention has been given to meteorological radars, which represent the majority of fixed installations presently subject to the 100 dBPEP attenuation required in ERC/REC 74-01. Further consideration was given to the levels in ERC/REC 74-01. In relation to FS, the Report considered: the impact of spurious emission, the very high power of the primary radars under consideration confirm the common assumption that, whichever would be the spurious limit in dBc, main-beam to main-beam coupling between radars and FS stations is not possible because in all cases the protection distance is in the order of several tens of km (in most cases lies beyond the horizon). Therefore, it is assumed that information about the FS and radar locations are known to administrations licensing their use; the impact of typical C band meteo radars on the variation of the potentially blocked azimuth angles for FS stations in the 6-8 GHz band was considered as more representative case.
    [Show full text]
  • Wavelets T( )= T( ) G F( ) F ,T ( )D F
    Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) Wavelets Recall: we can choose ! f (t ) as basis on which we expand, ie: y(t ) = " y f (t ) = "G f ! f (t ) f f ! f may be orthogonal – chosen for "appropriate" properties. # This is equivalent to the transform: y(t ) = $ G( f )!( f ,t )d f "# We have discussed !( f ,t ) = e2!ift for the Fourier transform. Now choose different Kernel- in particular to achieve space-time localization. Main advantage- offers complete space-time localization (which may deal with issues of non- stationarity) whilst retaining scale invariant property of the ! . First, why not just use (windowed) short time DFT to achieve space-time localization? Wavelets- we can optimize i.e. have a short time interval at high frequencies, and a long time interval at low frequencies; i.e. simple Wavelet can in principle be constructed as a band- pass Fourier process. A subset of wavelets are orthogonal (energy preserving c.f Parseval theorem) and have inverse transforms. Finite time domain DFT Wavelet- note scale parameter s 1 Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) So at its simplest, a wavelet transform is simply a collection of windowed band pass filters applied to the Fourier transform- and this is how wavelet transforms are often computed (as in Matlab). However we will want to impose some desirable properties, invertability (orthogonality) and completeness. Continuous Fourier transform: " m 1 T / 2 2!ifmt !2!ifmt x(t ) = Sme , fm = Sm = x(t )e dt # "!T / 2 m=!" T T ! i( n!m)x with orthogonality: e dx = 2!"mn "!! " x(t ) = # S( f )e2!ift df continuous Fourier transform pair: !" " S( f ) = # x(t )e!2!ift dt !" Continuous Wavelet transform: $ W !,a = x t " * t dt ( ) % ( ) ! ,a ( ) #$ 1 $ & $ ) da x(t) = ( W (!,a)"! ! ,a d! + 2 C % % a " 0 '#$ * 1 $ t # " ' Where the mother wavelet is ! " ,a (t) = ! & ) where ! is the shift parameter and a a % a ( is the scale (dilation) parameter (we can generalize to have a scaling function a(t)).
    [Show full text]
  • The Power Spectral Density of Phase Noise and Jitter: Theory, Data Analysis, and Experimental Results by Gil Engel
    AN-1067 APPLICATION NOTE One Technology Way • P. O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com The Power Spectral Density of Phase Noise and Jitter: Theory, Data Analysis, and Experimental Results by Gil Engel INTRODUCTION GENERAL DESCRIPTION Jitter on analog-to-digital and digital-to-analog converter sam- There are numerous techniques for generating clocks used in pling clocks presents a limit to the maximum signal-to-noise electronic equipment. Circuits include R-C feedback circuits, ratio that can be achieved (see Integrated Analog-to-Digital and timers, oscillators, and crystals and crystal oscillators. Depend- Digital-to-Analog Converters by van de Plassche in the References ing on circuit requirements, less expensive sources with higher section). In this application note, phase noise and jitter are defined. phase noise (jitter) may be acceptable. However, recent devices The power spectral density of phase noise and jitter is developed, demand better clock performance and, consequently, more time domain and frequency domain measurement techniques costly clock sources. Similar demands are placed on the spectral are described, limitations of laboratory equipment are explained, purity of signals sampled by converters, especially frequency and correction factors to these techniques are provided. The synthesizers used as sources in the testing of current higher theory presented is supported with experimental results applied performance converters. In the following section, definitions to a real world problem. of phase noise and jitter are presented. Then a mathematical derivation is developed relating phase noise and jitter to their frequency representation.
    [Show full text]
  • RF Engineering for Wireless Networks
    DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page i RF Engineering for Wireless Networks DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page ii DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page iii RF Engineering for Wireless Networks Hardware, Antennas, and Propagation Daniel M. Dobkin AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page iv Newnes is an imprint of Elsevier. 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK ϱ This book is printed on acid-free paper. Copyright # 2005, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (þ44) 1865 843830, fax: (þ44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting ‘‘Customer Support’’ and then ‘‘Obtaining Permissions.’’ Library of Congress Cataloging-in-Publication Data Application submitted British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN: 0-7506-7873-9 For all information on all Newnes/Elsevier Science publications visit our Web site at www.books.elsevier.com Printed in the United States of America 04050607080910987654321 DOBKIN: Basics of Wireless Communications Final Proof 1.10.2004 11:37am page v Contents Chapter 1: Introduction .............................
    [Show full text]
  • Isolation Between Antennas of IMT Base Stations in the Land Mobile Service
    Report ITU-R M.2244 (11/2011) Isolation between antennas of IMT base stations in the land mobile service M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2244 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • TR 101 036-1 V1.3.1 (2002-08) Technical Report
    ETSI TR 101 036-1 V1.3.1 (2002-08) Technical Report Fixed Radio Systems; Generic wordings for standards on DFRS (Digital Fixed Radio Systems) characteristics; Part 1: General aspects and point-to-point equipment parameters 2 ETSI TR 101 036-1 V1.3.1 (2002-08) Reference RTR/TM-04093 Keywords DFRS, DRRS, FWA, point-to-point, radio ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • Electromagnetic Compatibility and Radio Spectrum Matters (ERM); General Electromagnetic Compatibility (EMC) for Radio Communications Equipment
    Final draft EN 300 339 V1.1.1 (1998-03) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); General ElectroMagnetic Compatibility (EMC) for radio communications equipment European Telecommunications Standards Institute 2 Final draft EN 300 339 V1.1.1 (1998-03) Reference DEN/ERM-EMC-003 (35000ico.PDF) Keywords EMC, testing, radio ETSI Secretariat Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Internet [email protected] http://www.etsi.fr http://www.etsi.org Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1998. All rights reserved. 3 Final draft EN 300 339 V1.1.1 (1998-03) Contents Intellectual Property Rights................................................................................................................................5 Foreword ............................................................................................................................................................5 Introduction ........................................................................................................................................................5
    [Show full text]
  • Rep. ITU-R M.2109 1
    Rep. ITU-R M.2109 1 REPORT ITU-R M.2109 Sharing studies between IMT-Advanced systems and geostationary satellite networks in the fixed-satellite service in the 3 400-4 200 and 4 500-4 800 MHz frequency bands (2007) Executive summary This Report provides a summary of the sharing studies between IMT-Advanced systems and geostationary satellite networks in the fixed-satellite service (FSS) in the 3 400-4 200 and 4 500-4 800 MHz frequency bands. It was conducted by ITU-R in the framework of Agenda item 1.4 of WRC-07, in accordance with resolves 5 to Resolution 228 (Rev.WRC-03), as these bands were identified as candidate bands for future development of IMT-2000 and IMT-Advanced systems, as described in the Report ITU-R M.2079. The bands 3 400-4 200 MHz and 4 500-4 800 MHz are allocated worldwide on a primary basis to the FSS. This Report presents the results of the sharing studies performed between geostationary satellite networks in the FSS and IMT-Advanced systems. The following areas are covered in this Report: − Regulatory information. − Frequency usage by satellite services in these bands, provided on a global and regional basis. − FSS space and earth station deployments. − Considerations on potential identification of the 3 400-4 200 MHz and 4 500-4 800 MHz bands for IMT-Advanced. − Parameters of the systems considered in this Report. − Sharing studies (methodologies and results) between the two services from two aspects: − Interferences from IMT-Advanced transmitters to receiving FSS earth stations (in-band and adjacent band, and overdrive of the FSS receivers).
    [Show full text]