Linum Lewisii (Lewis's Blue Flax) (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table of Contents
TABLE OF CONTENTS INTRODUCTION .....................................................................................................................1 CREATING A WILDLIFE FRIENDLY YARD ......................................................................2 With Plant Variety Comes Wildlife Diversity...............................................................2 Existing Yards....................................................................................................2 Native Plants ......................................................................................................3 Why Choose Organic Fertilizers?......................................................................3 Butterfly Gardens...............................................................................................3 Fall Flower Garden Maintenance.......................................................................3 Water Availability..............................................................................................4 Bird Feeders...................................................................................................................4 Provide Grit to Assist with Digestion ................................................................5 Unwelcome Visitors at Your Feeders? ..............................................................5 Attracting Hummingbirds ..................................................................................5 Cleaning Bird Feeders........................................................................................6 -
Rigid Flax Linum Medium (Planch.) Britt
Rigid Flax Linum medium (Planch.) Britt. var. texanum (Planch.) Fern State Status: Threatened Federal Status: None Description: Rigid Flax is a perennial herb of the flax family (Linaceae), with yellow five-petaled flowers borne on stiff, ascending branches. Plants grow 2 to 7 dm (~8– 28 in.) in height. The flower petals are 4 to 8 mm long. The styles are distinct (i.e., not united at the base). The sepals are imbricate, and the inner ones have teeth with bulbous glandular tips along their edges. Leaves are entire, lance-shaped, and up to 2.5 cm (1 in.) long with the largest leaves towards the base of the plant. The upper leaves are alternate and usually have pointed tips, while those of the lowest nodes are opposite and blunt tipped. The sepals persist long after the petals have withered and subtend the small (2 mm), dry seed capsules. The species is most often found growing in barren, disturbed areas on sterile soil. Aids to identification: • Plants with stiffly ascending branches • Densely leaved with 30 to 70 leaves below the inflorescence • Lowest leaves opposite; upper leaves alternate • Seed capsules more-or-less spherical with a flattened top • Inner sepals with glandular teeth • Most easily identified when fruit are present Similar species: Four yellow-flowered Linum species that might be mistaken for Rigid Flax occur in Massachusetts. Grooved Yellow Flax (L. sulcatum var. sulcatum) differs from the other three in that it is an annual and its styles are united at the base. Woodland Yellow Flax (L. virginianum) and Panicled Yellow Flax (L. -
Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO. -
The History of Flax (Common Flax; Linum Usitatissimum)
The History of Flax (Common Flax; Linum usitatissimum) Ida Dyment http://www.flaxminnesota.com/Flax_Field_1_Med.jpg Common Flax (Linum usitatissimum) • Genus Linum, in Linaceae family. • Annual plant – grows up to 47 inches – thin leaves and stems. – Five-petal blue (to purple) flowers. http://www.mdidea.com/products/new/flax_flower01.jpg http://www.fleurdandeol.com/pic/msc/flax3.jpg The origins of Flax • Originated in the Mediterranean region into India. • Used in Egypt to wrap mummies • Early colonists grew small home plots • Began to be commercially processed starting around 1750 • Declined when cotton gin became popular Agriculture and Production • Flax grows well in temperate and sub-tropical regions in both hemisphere – France, Belgium, Russia, China, and Egypt grow a lot of the fiber flax currently – Minnesota and the Dakotas grow seed flax in the US • There are two common types of flax planted http://www.naturallygreen.co.uk/images/flaxseed.jpg Uses • Fiber – From Egypt to Modern Industry • Textiles, rope, paper • Food – Human food from seeds, fiber, oil – Livestock feed • Pharmacy – (Omega-3 fatty acids) – Heart health – skin treatment and cosmetics • Also used for ornamental purposes Omega-3 fatty acids • Omega-3 fatty acids in linseed oil may help prevent certain cancers. • Omega-3’s are also helpful for mental health • Helps lower cholesterol and regulate blood pressure • Flax also has very high level of lignans Many other uses • Flax in animal feed – Livestock and chickens • Aids digestion and • fortifies eggs • Flaxseed oil (linseed) also used for oil-painting agents, specialized paper, particleboard, varnish http://riverglenfarm.ca/__oneclick_uploads/2008/07/eggs.jpg http://www.sghongsheng.com/image/Plain%20particle%20board1.jpg http://www.frontera.com/assets/inline_images/39_braz%20cherry%20with%20linseed%20oil.jpg . -
Herbivory Across Vascular Plants Macroecological And
Downloaded from rspb.royalsocietypublishing.org on May 30, 2014 Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants Martin M. Turcotte, T. Jonathan Davies, Christina J. M. Thomsen and Marc T. J. Johnson Proc. R. Soc. B 2014 281, 20140555, published 28 May 2014 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2014/05/27/rspb.2014.0555.DC1.h tml References This article cites 51 articles, 18 of which can be accessed free http://rspb.royalsocietypublishing.org/content/281/1787/20140555.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections ecology (1660 articles) evolution (1777 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions Downloaded from rspb.royalsocietypublishing.org on May 30, 2014 Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants 1 2 1,3 rspb.royalsocietypublishing.org Martin M. Turcotte , T. Jonathan Davies , Christina J. M. Thomsen and Marc T. J. Johnson1 1Department of Biology, University of Toronto-Mississauga, Mississauga, Ontario, Canada L5L 1C6 2Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1 3 Research Department of Biology, University of Ottawa, Ontario, Canada K1N 6N5 The consumption of plants by animals underlies important evolutionary and Cite this article: Turcotte MM, Davies TJ, ecological processes in nature. Arthropod herbivory evolved approximately Thomsen CJM, Johnson MTJ. 2014 415 Ma and the ensuing coevolution between plants and herbivores is cred- Macroecological and macroevolutionary ited with generating much of the macroscopic diversity on the Earth. -
Linum Perenne 'Bright Eyes'1
Fact Sheet FPS-346 October, 1999 Linum perenne ‘Bright Eyes’1 Edward F. Gilman2 Introduction Perennial flax produces blue flowers during June and July and grows 12 to 18 inches tall (Fig. 1). General Information Scientific name: Linum perenne ‘Bright Eyes’ Pronunciation: LYE-num per-REN-nuh Common name(s): ‘Bright Eyes’ Perennial Flax Family: Linaceae Plant type: herbaceous USDA hardiness zones: 5 through 8 (Fig. 2) Planting month for zone 7: year round Planting month for zone 8: year round Origin: not native to North America Uses: edging; mass planting Availablity: somewhat available, may have to go out of the region to find the plant Description Figure 1. ‘Bright Eyes’ Perennial Flax. Height: 1 to 2 feet Spread: 1 to 2 feet Plant habit: upright Leaf type: simple Plant density: open Leaf margin: entire Growth rate: moderate Leaf shape: linear Texture: fine Leaf venation: none, or difficult to see Leaf type and persistence: deciduous Foliage Leaf blade length: less than 2 inches Leaf color: green Leaf arrangement: alternate Fall color: no fall color change 1.This document is Fact Sheet FPS-346, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October, 1999 Please visit the EDIS Web site at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611. The Institute of Food and Agricultural Sciences is an equal opportunity/affirmative action employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, age, handicap, or national origin. -
Flora-Lab-Manual.Pdf
LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae -
Linaceae – Flax Family
LINACEAE – FLAX FAMILY Plant: mostly herbs, a few shrubs and trees Stem: Root: Leaves: mostly simple, alternate or opposite, usually spiraled, sessile; stipules present, usually small Flowers: perfect; usually in cymes, 5 sepals, 5 petals, cyclic, petals often clawed; 5-10-15 stamens; ovary superior Fruit: a schizocarp, drupe, nut, or capsule, may be fleshy or not Other: ; Dicotyledons Group Genera: 8+ genera; locally Linum WARNING – family descriptions are only a layman’s guide and should not be used as definitive LINACEAE – FLAX FAMILY Lewis [Western Blue] Flax; Linum lewisii Pursh Grooved Flax; Linum sulcatum Riddell Common [Blue-Flowered] Flax [Linseed]; Linum usitatissimum L. (Introduced) Lewis [Western USDA Blue] Flax Linum lewisii Pursh Linaceae (Flax Family) Near Fraser, Grand County, Colorado Notes: 5-petaled flower, blue, sepals pointed; leaves alternate, linear, usually many stems together; dry plains to montane conditions; late spring to fall [V Max Brown, 2012] Grooved Flax USDA Linum sulcatum Riddell Linaceae (Flax Family) Busiek State Forest and Wildlife Area, Christian County, Missouri Notes: 5-petaled flower, yellow (usually less than 1 cm), sepals pointed, fruiting stalks up to 1 cm; leaves alternate, narrowly lanceolate to linear, with 2 small black glands at base of leaf; late spring to early fall [V Max Brown, 2010] Common [Blue-Flowered] USDA Flax [Linseed] Linum usitatissimum L. (Introduced) Linaceae (Flax Family) Wilson’s Creek National Battlefield, Greene County, Missouri Notes: 5-petaled flower, blue, sepals pointed and without glands; leaves alternate, linear, usually many stems together; spring to summer to early fall [V Max Brown, 2010]. -
How to Attract and Maintain Pollinators in Your Garden MARISSA V
ANR Publication 8498 | October 2013 http://anrcatalog.ucanr.edu How to Attract and Maintain Pollinators in Your Garden MARISSA V. PONDER, Laboratory NTRODUCTION Assistant, University of California, I Berkeley; GORDON W. FRANKIE, Entomologist, University of early all ecosystems on earth depend on pollination California, Berkeley; RACHEL Nof flowering plants for their existence and survival; ELKINS, UC Cooperative Extension furthermore, from 70 to 75 percent of the world’s Pomology Advisor, Lake and flowering plants and over one-third of the world’s crop Mendocino Counties; KATE FREY, International Landscape Designer; species depend on pollination for reproduction (Klein ROLLIN COVILLE, Photographer, et al. 2007; NAS 2007). Take a stroll through your University of California, Berkeley; neighborhood or a botanical garden, or hike in the MARY SCHINDLER, Laboratory hills, and experience the shapes and smells of flowers Assistant, University of California, surrounding you. When most people look at a flower, Berkeley; SARA LEON GUERRERO, Laboratory Assistant, University of they notice the shape, smell, composition, or structure California, Berkeley; of the flower, but few take a moment to consider why JAIME C. PAWELEK, Laboratory the blossom appears and smells as it does (Frey 2001). Assistant, University of California, Plants have evolved through time to offer unique flowers Berkeley; and CAROLYN SHAFFER, that attract select pollinators, thus ensuring that the Laboratory Assistant, UC Cooperative Extension, pollinator’s visits will provide them with another year of Lake County flowers and fruiting. The end result of the pollination process is that humans and animals of all kinds benefit from a bountiful supply of food and beauty (NAS 2007). -
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture Forest Service Donald L. Hazlett Rocky Mountain Research Station General Technical Report RMRS-GTR-130 June 2004 Hazlett, Donald L. 2004. Vascular plant species of the Comanche National Grassland in southeast- ern Colorado. Gen. Tech. Rep. RMRS-GTR-130. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 36 p. Abstract This checklist has 785 species and 801 taxa (for taxa, the varieties and subspecies are included in the count) in 90 plant families. The most common plant families are the grasses (Poaceae) and the sunflower family (Asteraceae). Of this total, 513 taxa are definitely known to occur on the Comanche National Grassland. The remaining 288 taxa occur in nearby areas of southeastern Colorado and may be discovered on the Comanche National Grassland. The Author Dr. Donald L. Hazlett has worked as an ecologist, botanist, ethnobotanist, and teacher in Latin America and in Colorado. He has specialized in the flora of the eastern plains since 1985. His many years in Latin America prompted him to include Spanish common names in this report, names that are seldom reported in floristic pub- lications. He is also compiling plant folklore stories for Great Plains plants. Since Don is a native of Otero county, this project was of special interest. All Photos by the Author Cover: Purgatoire Canyon, Comanche National Grassland You may order additional copies of this publication by sending your mailing information in label form through one of the following media. -
Establishment of Wildflower Islands to Enhance Roadside Health and Aesthetics
Establishment of Wildflower Islands to Enhance Roadside Health and Aesthetics Project MO-58 Final Report Submitted to the Nebraska Department of Transportation on December 30, 2019. By Judy Wu-Smart1 and Walter Schacht2 Department of Entomology1 Department of Agronomy and Horticulture2 University of Nebraska-Lincoln In Collaboration with Carol Wienhold Environmental Section Nebraska Department of Transportation 1 Technical Report Documentation Page 1. Report No 2. Government Accession No. 3. Recipient’s Catalog No. MO58 4. Title and Subtitle 5. Report Date: December 30, 2019 Establishment of Wildflower Islands to Enhance Roadside Health and Aesthetics 6. Performing Organization Code 7. Author/s: Judy Wu-Smart and Walter Schacht 8. Performing Organization Report No. 9. Performing Organization Name and Address: 10. Work Unit No. (TRAIS) University of Nebraska-Lincoln 1700 East Campus Mall 11. Contract or Grant No. 105A Entomology Hall Project MO58 Lincoln, NE 68583-0816 UNL Contract: SPR-1(17) M058 12. Sponsoring Organization Name and Address: 13. Type of Report and Period Covered Nebraska Department of Transportation Final report Research Section 14. Sponsoring Agency Code 1400 Hwy 2 Lincoln, NE 68509 15. Supplementary Notes 16. Abstract Wildflowers are crucial in the ecological function of the low-input roadside plant communities in terms of water and nutrient cycling, nutrient inputs such as nitrogen, total plant canopy cover, stand longevity, and provision of habitat for numerous small animals. Further, wildflowers provide critical foraging and nesting resources for birds, insects, and other wildlife. Unfortunately, habitat loss from agricultural and urban development has led to rapid population declines in wild bees and other pollinators across the US, thereby jeopardizing not only food production but also the sustainability of our natural landscapes (Kearns & Inouye, 1997). -
Desert Plants of Utah
DESERT PLANTS OF UTAH Original booklet and drawings by Berniece A. Andersen Revised May 1996 HG 505 FOREWORD The original Desert Plants of Utah by Berniece A. Andersen has been a remarkably popular book, serving as a tribute to both her botanical knowledge of the region and to her enthusiastic manner. For these reasons, we have tried to retain as much of the original work, in both content and style, as possible. Some modifications were necessary. We have updated scientific names in accordance with changes that have occurred since the time of the first publication and we have also incorporated new geographic distributional data that have accrued with additional years of botanical exploration. The most obvious difference pertains to the organization of species. In the original version, species were organized phylogenetically, reflecting the predominant concepts of evolutionary relationships among plant families at that time. In an effort to make this version more user-friendly for the beginner, we have chosen to arrange the plants primarily by flower color. We hope that these changes will not diminish the enjoyment gained by anyone familiar with the original. We would also like to thank Larry A. Rupp, Extension Horticulture Specialist, for critical review of the draft and for the cover photo. Linda Allen, Assistant Curator, Intermountain Herbarium Donna H. Falkenborg, Extension Editor TABLE OF CONTENTS The Nature of Deserts ........................................................1 Utah’s Deserts ........................................................2