Global Maritime Distress and Safety System (GMDSS) Handbook 2018 I CONTENTS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbookhandbook Mobile-Satellite Service (MSS) Handbook
n International Telecommunication Union Mobile-satellite service (MSS) HandbookHandbook Mobile-satellite service (MSS) Handbook *00000* Edition 2002 Printed in Switzerland Geneva, 2002 ISBN 92-61-09951-3 Radiocommunication Bureau Edition 2002 THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 6141 English Telephone: +41 22 730 6142 French Telephone: +41 22 730 6143 Spanish Fax: +41 22 730 5194 Telex: 421 000 uit ch Telegram: ITU GENEVE E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ITU 2002 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union HandbookHandbook Mobile-satellite service (MSS) Radiocommunication Bureau Edition 2002 - iii - FOREWORD In today’s world, people have become increasingly mobile in both their work and play. -
47 CFR Ch. I (10–1–97 Edition) § 80.223
§ 80.223 47 CFR Ch. I (10±1±97 Edition) (3) The interval between successive able to be manually keyed. If provi- tones must not exceed 4 milliseconds; sions are made for automatically (4) The amplitude ratio of the tones transmitting the radiotelegraph alarm must be flat within 1.6 dB; signal or the radiotelegraph distress (5) The output of the device must be signal, such provisions must meet the sufficient to modulate the associated requirements in subpart F of this part. transmitter for H2B emission to at (d) Any EPIRB carried as part of a least 70 percent, and for J2B emission survival craft station must comply to within 3 dB of the rated peak enve- with the specific technical and per- lope power; formance requirements for its class (6) Light from the device must not contained in subpart V of this chapter. interfere with the safe navigation of the ship; [51 FR 31213, Sept. 2, 1986, as amended at 53 (7) After activation the device must FR 8905, Mar. 18, 1988; 53 FR 37308, Sept. 26, automatically generate the radio- 1988; 56 FR 11516, Mar. 19, 1991] telephone alarm signal for not less than 30 seconds and not more than 60 § 80.225 Requirements for selective seconds unless manually interrupted; calling equipment. (8) After generating the radio- This section specifies the require- telephone alarm signal or after manual ments for voluntary digital selective interruption the device must be imme- calling (DSC) equipment and selective diately ready to repeat the signal; calling equipment installed in ship and (9) The transmitter must be auto- coast stations. -
ODQN 10-1.Indd
National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 10, Issue 1 January 2006 Collision Avoidance Maneuver Performed by NASA’s Terra Spacecraft Inside... The Terra spacecraft, often referred to as the ignator 1983-063C, U.S. Satellite Number 14222) fl agship of NASA’s Earth Observing System (EOS), would come within 500 m of Terra on 23 October, successfully performed a small collision avoidance GSFC and SSN personnel undertook a more de- Large Area Debris maneuver on 21 October 2005 to ensure safe passage tailed assessment of the coming conjunction. Collector (LAD-C) by a piece of orbital debris two days later. This ac- The Scout debris was in an orbit with an alti- Update ........................2 tion demonstrated the effectiveness of a conjunction tude similar to that of Terra (approximately assessment procedure implemented in 2004 680 km by 710 km), but its posigrade Revision of Space by personnel of the NASA Goddard inclination of 82.4° and different orbit Shuttle Wing Leading Space Flight Center (GSFC) and the plane meant that a collision would have Edge Reinforced U.S. Space Surveillance Network occurred at a high velocity of near- (SSN). The trajectories of Terra ly 12 km/s. By 21 October Carbon-Carbon Failure and its companion EOS space- refi ned analysis of the Criteria Based on craft are frequently com- future close approach Hypervelocity Impact pared with the orbits of indicated that the miss and Arc-Jet Testing ...3 thousands of objects distance was only ap- tracked by the SSN proximately 50 m with Object Reentry to determine if an an uncertainty that Survivability Analysis accidental collision yielded a probability Tool (ORSAT) – is possible. -
Fcc Element One Examination Study Guide
MID-ATLANTIC MARITIME ACADMEY 2013 FCC ELEMENT ONE EXAMINATION STUDY GUIDE Developed By Richard Weyandt, Master for MAMA Page 1 MID-ATLANTIC MARITIME ACADMEY 2013 Introduction. We seek to accomplish two important goals in the pages that follow: 1) To review the communications topics that the have been identified as appearing on the examinations for all your Marine Radio Operators Permit and 2) To provide sufficient background and coverage for a qualified applicant who may desire or be required to pass the written examination for a Marine Radio Operator Permit. The following radiotelephone communications topics may be on your examination: Intro: Basic Types of Marine Radios VHF-AM / FM & Other Systems FCC ELEMENT ONE SUBJECT MATERAL; 47CFR Part 80 1) Equipment Requirements 2) License Requirements 3) Watchkeeping 4) Logkeeping 5) Log Entries 6) Misc Rules and Regulations 7) Bridge-to-Bridge Operations 8) Operating Procedures Part 1 9) Operating procedures Part 2 10) Distress Communications 11) Urgency and Safety Communications 12) GMDSS 13) VHF Equipment Controls 14) VHF Channel Selection 15) MF/HF Equipment Controls 16) MF/HF Freqencys and Emission Selection 17) Equipment Tests 18) Equipment Faults 19) Antennas 20) Power Sources 21) EPIRB‘s 22) SART 23) Survival Craft VHF 24) Navtex 25) Definitions Test Questions from: FCC Commercial Element 1 Question Pool (approved 25 June 2009) Developed By Richard Weyandt, Master for MAMA Page 2 MID-ATLANTIC MARITIME ACADMEY 2013 BASIC TYPES OF MARINE RADIOS - AM & VHF-FM - OTHER RADIO SYSTEMS Radio communications are in a constant state of change and improvement. In the early 1970s we passed through a period which witnessed a complete overhaul in our entire marine radio system. -
CITC Operational Procedures for Issuing Frequency Assignments and Radio Licenses for Professional Radiocommunication Services
CITC Operational Procedures for Issuing Frequency Assignments and Radio Licenses for Professional Radiocommunication Services Contents 1. INTRODUCTION....................................................................................................... 5 2. AERONAUTICAL SERVICES ................................................................................. 6 2.1 INTRODUCTION .................................................................................................. 6 2.2 DESCRIPTION OF SERVICES/LICENCES ................................................................ 6 2.2.1 LICENCES AVAILABLE. ........................................................................................ 6 2.2.2 WHO CAN APPLY ................................................................................................ 7 2.3 FREQUENCY BANDS ........................................................................................... 7 2.4 LICENSING GUIDELINES ...................................................................................... 7 2.4.1 CALL SIGNS ....................................................................................................... 7 2.4.2 FITTING OF EQUIPMENT ...................................................................................... 8 2.4.3 OPERATION OF EQUIPMENT ................................................................................ 8 2.5 LICENCE APPLICATION FORMS ............................................................................ 8 2.6 TIMESCALES FOR LICENCE ISSUE ....................................................................... -
General Disclaimer One Or More of the Following Statements May Affect
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) . AE (NASA-TM-74770) SATELLITES FOR DISTRESS 77-28178 ALERTING AND LOCATING; REPORT BY TNTERAG .ENCY COMMITTEE FOR SEARCH AND RESCUE !^ !I"^ U U AD HOC WORKING GROUP Final Report. ( National. Unclas Aeronautics and Space Administration) 178 p G3 / 15 41346 0" INTERAGENCY COMMITTEE FOR SEARCH AND RESCUE AD HOC WORKING GROUP REPORT ON SATELLITES FOR DISTRESS ALERTING AND LOCATING FINAL REPORT OCTOBER 1976 r^> JUL 1977 RASA STI FACIUIV INPUT 3DNUH ^;w ^^^p^112 ^3 jq7 Lltl1V797, I - , ^1^ , - I t Y I FOREWORD L I^ This report was prepared to document the work initiated by the ad hoc working group on satellites for search and rescue (SAR). The ad hoc L working group on satellites for distress alerting and locating (DAL), formed 1 in November 1975 by agreement of the Interagency Committee on Search and Rescue (ICSAR), consisted of representatives from Maritime Administration, NASA Headquarters, Goddard Space Flight Center, U.S. -
D5.2: Process Map for Autonomous Navigation
Grant Agreement number: 314286 Project acronym: MUNIN Project title: Maritime Unmanned Navigation through Intelligence in Networks Funding Scheme: SST.2012.5.2‐5: E‐guided vessels: the 'autonomous' ship D5.2: Process map for autonomous navigation Due date of deliverable: 2013‐07‐31 Actual submission date: Start date of project: 2012‐09‐01 Project Duration: 36 months Lead partner for deliverable: Fraunhofer CML Distribution date: 2013‐09‐27 Document revision: 1.0 Project co‐funded by the European Commission within the Seventh Framework Programme (2007‐2013) Dissemination Level PU Public Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) MUNIN – FP7 GA‐No 314286 D5.2 ‐ Print date: 14/01/07 Document summary information Deliverable D5.2: Process map for autonomous navigation Classification PU (public) Initials Author Organization Role WB Wilko Bruhn CML Editor HCB Hans‐Christoph Burmeister CML Editor LW Laura Walther CML Contributor JM Jonas Moræus APT Contributor ML Matt Long APT Contributor MS Michèle Schaub HSW Contributor EF Enrico Fentzahn MsoftContributor Rev. Who Date Comment 0.1 WB 2013‐08‐01 First draft 0.2 ØJR 2013‐08‐12 Partner review 0.3 AV 2013‐08‐13 Partner review 0.4 BS 2013‐08‐13 Partner review 0.5 WB 2013‐08‐30 Second draft after comments 1.0 HCB 2013‐08‐27 Formating Internal review needed: [ X ] yes [ ] no Initials Reviewer Approved Not approved FS Fariborz Safari X AV Ari Vésteinsson X Disclaimer The content of the publication herein is the sole responsibility of the publishers and it does not necessarily represent the views expressed by the European Commission or its services. -
Base Station Antenna Selection for LTE Networks
White paper Base station antenna selection for LTE networks Ivy Y. Kelly, Ph.D. technology development strategist, Sprint Martin Zimmerman, Ph.D. Base Station Antenna engineering director, CommScope Ray Butler, MSEE Wireless Network Engineering vice president, CommScope Yi Zheng, Ph.D. Base Station Antenna senior engineer, CommScope December 2017 Contents Executive summary 3 Antenna overview 3 LTE fundamentals 3 Selecting the optimum antenna for your network 5 Conclusion 6 References 6 About the authors 7 commscope.com 2 Executive summary Rapid mobile data growth is requiring the industry to use more sophisticated, higher-capacity access technologies like LTE, which supports many advanced antenna techniques. LTE requires precise containment of RF signals used to transmit mobile data, which can only be accomplished with high-performance antennas. This paper gives an overview of antennas and their application in practical configurations for various types of LTE antenna techniques. Antenna overview Antenna parameters can be separated into two categories, as shown The first LTE specification is part of 3GPP Release 8, which was below. Primary parameters (Table 1) are those specifically mentioned frozen in December 2008. LTE-Advanced generally refers to the LTE when defining the type of antenna used in a particular application. features that are found in Release 10 and beyond. LTE-Advanced For a given antenna vendor, the primary parameters are enough to features include CA, eight-layer DL transmission, four-layer UL identify a specific model that can be used. Secondary parameters transmission, and enhanced inter-cell interference coordination (Table 2) are those that impact performance and can be used to (eICIC).2 Release 10 features are just now being deployed. -
Federal Communications Commission § 90.665
Federal Communications Commission § 90.665 § 90.656 Responsibilities of base sta- where within their authorized MTA, tion licensees of Specialized Mobile provided that: Radio systems. (1) The MTA licensee affords protec- (a) The licensees of base stations that tion, in accordance with § 90.621(b), to provide Specialized Mobile Radio serv- all sites for which applications were ice on a commercial basis of the use of filed on or prior to August 9, 1994. individuals, Federal government agen- (2) The MTA licensee complies with cies, or persons eligible for licensing any rules and international agreements under either subparts B or C of this that restrict use of frequencies identi- part will be responsible for exercising fied in their spectrum block, including effective operational control over all the provisions of § 90.619 relating to mobile and control stations that com- U.S./Canadian and U.S./Mexican border municate with the base station. The areas. base station licensee will be respon- (3) The MTA licensee limits its field sible for assuring that its system is op- strength at any location on the border erated in compliance with all applica- of the MTA service area in accordance ble rules and regulations. with § 90.671 and masks its emissions in accordance with § 90.669. (b) Customers that operate mobile (b) In the event that the authoriza- units on a particular Specialized Mo- tion for a previously authorized co- bile Radio system will be licensed to channel station within the MTA licens- that system. A customer that operates ee’s authorized spectrum block is ter- temporarily on more than one system minated or revoked, the MTA licens- will be deemed, when communicating ee’s co-channel obligations to such sta- with the other system, to be tempo- tion will cease upon deletion of the fa- rarily licensed to the other system and cility from the Commission’s licensing for that temporary period, the licensee record. -
SCS PACTOR 4 (Pdf)
1. Introduction 1 Introduction 1.1 SCS P4dragon, the next Generation Thank you for purchasing the SCS P4dragon DR7800 high performance HF radio modem. SCS modems are the original PACTOR mode modems developed by the people who have created all PACTOR modes. From SCS and SCS representatives, you will receive the best possible support and benefit from the concentrated knowledge of the PACTOR engineers who invented PACTOR. With the introduction of the P4dragon DR7800 modem, SCS also announces PACTOR-4 as a new mode of high performance data transmission over HF frequencies. P4dragon stands for high sophisticated algorithms of communication engineering and high computation power of the PACTOR modems of the fourth generation. 1.2 Packaging list This is a complete list of hardware and software supplied with the SCS P4dragon: • 1 x P4dragon DR7800 High Performance HF-Radio Modem • 1 x Installation Guide • 1 x SCS CD-ROM • 1 x 8 pole DIN cable • 1 x 13 pole DIN cable • 1 x USB cable • 1 x RJ45 Patch cable (with installed “network option”) 1.3 Requirements to operate a PACTOR Modem A transceiver capable of switching between transmit and receive within 20 ms. Most modern transceivers fulfill this requirement. A computer that provides an USB interface or Bluetooth capability. An appropriate terminal program to operate with a USB or Bluetooth virtual COM port. 1.4 About this installation guide This installation manual contains only relevant information about the installation of your SCS P4dragon modem and popular applications like HF email. You can find complete documentation and detailed descriptions of the command set of the P4dragon in the electronic version of the complete manual (PDF format) on the SCS CD-ROM supplied with your modem. -
Updated Analysis of Inmarsat and Iridium Aeronautical Services in the Same Oceanic Airspace
E.F.C.LaBerge Senior Fellow, Honeywell CNS RTC June 18, 2008 [email protected] Updated Analysis of Inmarsat and Iridium Aeronautical Services in the Same Oceanic Airspace. 1 IEEE/AIAA 26th DASC, October 2007, Paper 213 EFC LaBerge & D. Zeng Purpose and Scope of the Analysis • Investigate Iridium AMSS/AMS(R)S and Inmarsat AMSS/AMS(R)S on separate aircraft in the same oceanic airspace • Analysis is limited to Oceanic Airspace structured following DO-306 guidelines, since FANS-1/A datalink Air Traffic Service (ATS) has widespread approval for operations in oceanic airspace • Conclusions are not applicable to other operational scenarios or airspace, including: - Polar, continental enroute, terminal, approach, and airport surface airspace as defined in Eurocontrol/FAA COCR document; - Simultaneous independent operation of Iridium and Inmarsat AESes on the same aircraft; and - All non-aeronautical terminals and non-aeronautical services 2 Released to ICAO ACP WGM June 18, 2008 Conclusions • The probability of Inmarsat AMSS/AMS(R)S causing a service interruption that would affect the availability of Iridium AMSS/AMS(R)S operating on separate aircraft in oceanic airspace is very small • In oceanic airspace, Inmarsat AMSS/AMS(R)S out of band emissions from one aircraft do not cause harmful interference to Iridium AMSS/AMS(R)S on another aircraft: - The functioning of Iridium AMSS/AMS(R)S is not endangered; - No serious degradation, obstruction or repeated interruption of the operation of Iridium AMSS/AMS(R)S 3 Released to ICAO ACP WGM June 18, 2008 Full disclosure, etc. • This work was based on the volumetric interference approach briefed to AMCP WGA in 1998-2000… • …and supported by Iridium, LLC (the old Iridium). -
Mnlilslffislßl SIGNAL BOOK UNITED STATES ARMY
Uifh '^r MnlilSlffiSlßl SIGNAL BOOK UNITED STATES ARMY v 1916 WASHINGTON GOVERNMENT PRINTING OFFICE 1916 NOV 0 8 1988 WAR DEPARTMENT Document No. 500 Office ofthe Chief Sijnal Officer ADDITIONALCOPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE•SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE "WASHINGTON,D. C. AT 20 CENTS PER COPY V War Department, Office of the Chief of Staff. > Washington, April15, 1916. The followingSignal Book, prepared by the Chief Signal Officer of the Army,is approved and herewith issued for the information and government of the Regular Army and the Organized Militia of the United States. It supersedes Signal Book, United States Army, 1914, and its provisions willbe strictly observed throughout the service. order of the Secretary of War: H.L. Scott, Major General, Chief ofStaff. 3 CONTENTS. Page. Part I. General Instructions for Army Signaling 7 11. The American Morse Code 9 111. The International Morse or General Service Code. \u25a0 12 IV. Visual Signaling ingeneral 15 V. Visual Signaling by Flag, Torch, Hand Lan tern, or Beam of Searchlight (without shut ter) 17 VI. Signaling with Heliograph, Flash Lantern, or Searchlight (with shutter) 18 VII.The Ardois System 19 VIII.Signaling by Two-ArmSemaphore . 21 Stationary Semaphore 21 Hand Flags withTwo-ArmSemaphore Code. 21 IX.Letter Codes: Infantry .' 23 Cavalry. 24 Field Artillery ..... 24 Coast Artillery , 26 X. Conventional and Preconcerted Signals with Rockets, Bombs, Small Arms, Guns, Coston Lights, Very Pistols, etc 2828 XI.Flag Signals by Permanent Hoist. 31 XII.Conventional Telephone Signals 33 XIII.Emergency Signals '.. 34 XIV.Additional and Improvised Codes. 38 XV.