ODQN 10-1.Indd

Total Page:16

File Type:pdf, Size:1020Kb

ODQN 10-1.Indd National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 10, Issue 1 January 2006 Collision Avoidance Maneuver Performed by NASA’s Terra Spacecraft Inside... The Terra spacecraft, often referred to as the ignator 1983-063C, U.S. Satellite Number 14222) fl agship of NASA’s Earth Observing System (EOS), would come within 500 m of Terra on 23 October, successfully performed a small collision avoidance GSFC and SSN personnel undertook a more de- Large Area Debris maneuver on 21 October 2005 to ensure safe passage tailed assessment of the coming conjunction. Collector (LAD-C) by a piece of orbital debris two days later. This ac- The Scout debris was in an orbit with an alti- Update ........................2 tion demonstrated the effectiveness of a conjunction tude similar to that of Terra (approximately assessment procedure implemented in 2004 680 km by 710 km), but its posigrade Revision of Space by personnel of the NASA Goddard inclination of 82.4° and different orbit Shuttle Wing Leading Space Flight Center (GSFC) and the plane meant that a collision would have Edge Reinforced U.S. Space Surveillance Network occurred at a high velocity of near- (SSN). The trajectories of Terra ly 12 km/s. By 21 October Carbon-Carbon Failure and its companion EOS space- refi ned analysis of the Criteria Based on craft are frequently com- future close approach Hypervelocity Impact pared with the orbits of indicated that the miss and Arc-Jet Testing ...3 thousands of objects distance was only ap- tracked by the SSN proximately 50 m with Object Reentry to determine if an an uncertainty that Survivability Analysis accidental collision yielded a probability Tool (ORSAT) – is possible. More than of collision on the or- Version 6.0..................4 2600 objects are known to der of 1 in 100. Con- pass through the altitude regime of Terra sequently, a decision was made for Terra to execute Disposal of Globalstar multiple times (sometimes more than two dozen) a collision avoidance maneuver. Satellites .....................5 each day. Terra normally maneuvers a few times each Terra (International Designator 1999-068A, U.S. year to maintain its precision orbit, and the collision Disposal of GPS Satellite Number 25994) was launched on 18 De- avoidance maneuver was designed to serve this same Spacecraft ..................5 cember 1999 on a nominal 6-year mission to moni- function to prevent the waste of precious propel- tor the complex nature of the Earth’s atmosphere lant. A very small maneuver was performed nearly and surface. The nearly fi ve-metric-ton spacecraft two days before the anticipated encounter, ensuring circles the Earth at an altitude of 705 km with an that the Scout debris would pass Terra at a distance orbital inclination of 98.2°. When a conjunction as- of more than 4 km. A post-encounter assessment sessment on 17 October predicted a piece of debris confi rmed that this goal was achieved without dis- from a Scout G-1 upper stage (International Des- ruption to the important Terra mission. ♦ ERBS and UARS Spacecraft Complete Postmission Disposal Activities During October-December 2005, two of Upper Atmosphere Research Satellite (UARS) NASA’s venerable scientific spacecraft were returned valuable environmental data for 21 A publication of decommissioned following the completion of and 14 years, respectively, before their missions The NASA Orbital postmission disposal operations. The Earth were terminated (Orbital Debris Quarterly News, Debris Program Offi ce Radiation Budget Experiment (ERBS) and the continued on page 2 Orbital Debris Quarterly News ERBS and UARS continued from page 1 the atmosphere within 17 years, well in lowered apogee, avoiding any possible im- 9-4, p. 1). compliance with the NASA and U.S. Gov- minent collision threat with ISS. ERBS (International Designator ernment recommendation of not more The final UARS maneuver was per- 1984-108B, U.S. Satellite Number 15354) than 25 years after end of mission. formed on 8 December and was followed had already been placed in a lower altitude UARS (International Designator by vehicle passivation. When UARS even- orbit in 2002, in anticipation of its future 1991-063B, U.S. Satellite Number 21701) tually decays through the orbital regime disposal. This proved to be a fortuitous was still operating in an orbit near 550 km of ISS, routine tracking by the U.S. Space decision because by 2005 the degradation when it began a series of eight maneu- Surveillance Network will help ensure that of ERBS support systems prevented the vers to hasten its fall back to Earth and to any potential collision risk is eliminated, execution of normal maneuvers which passivate the spacecraft as an explosion if necessary via a collision avoidance ma- would further lower the orbit. However, preventive measure. The first six maneu- neuver by ISS. However, such a situation a series of maneuvers in September and vers, conducted between 4 October and 1 is highly unlikely. Hundreds of cataloged October was able to consume the remain- December, were designed to lower peri- objects pass through the ISS altitude re- ing 80 kg of propellant. These maneuvers gee to an altitude just above the orbit of gion many times a day, but the frequency left the mean altitude of ERBS essentially the International Space Station (ISS), near of ISS collision avoidance maneuvers is unchanged, while reducing its eccentric- 350 km altitude. Since the amount of less than one per year. ity. propellant remaining after these six ma- UARS is now expected to reenter the Passivation of ERBS was completed, neuvers was still uncertain, further near- atmosphere in about 5 years, at least 20 and the spacecraft was officially decom- term, post-maneuver conjunction assess- years earlier than if no maneuvers had missioned on 14 October. From its cur- ments with ISS would have been difficult. been performed. ♦ rent orbit, ERBS is expected to reenter Therefore, the remaining two maneuvers 600 580 Apogee 570 550 Perigee 560 500 550 540 450 530 Altitude (km) Altitude (km) 400 520 Apogee 510 350 Perigee 500 300 490 2005 2005.2 2005.4 2005.6 2005.8 2006 2002 2003 2004 2005 2006 By performing a series of disposal maneuvers, UARS reduced its remaining orbital ERBS operated near 600 km for nearly 18 years before its orbit was lowered to lifetime by more than 20 years. accelerate its decay after end of mission. Large Area Debris Collector (LAD-C) Update The official kickoff meeting for the nizations. The STP Office is responsible for LAD-C mission objectives and requirements; Large Area Debris Collector (LAD-C) was the manifesting, integration, and deployment on the acoustic and electronic components hosted by the U.S. Department of Defense of LAD-C on ISS, and the retrieval of the of the system (see Orbital Debris Quarterly (DoD) Space Test Program (STP) in Hous- system after one to two years. News, 8-2, p. 3); and on the primary science ton, Texas on 27 October 2005. LAD-C is The kickoff meeting included presen- objectives, and the benefits of the science re- a 10 m2 aerogel and acoustic sensor system tations by STP managers and engineers on turn for orbital debris, cosmic dust, and safe- designed to characterize and collect sub-mil- project organizations, roles and responsibili- ty communities. Additional issues regarding limeter micrometeoroids and orbital debris ties; on ISS and Shuttle payload, integration, the mechanical design, power requirements, on the International Space Station (ISS). and safety requirements; and on extravehicu- system location and orientation, and poten- The project is led by the U.S. Naval Research lar activity issues. According to STP’s payload tial ISS environment contamination were also Laboratory (NRL) in Washington D.C. with schedule, LAD-C deployment is tentatively discussed at the meeting. Follow-up biweekly primary collaboration by the NASA Orbital set for mid-2007 with an exposure time of teleconferences will be arranged to continue Debris Program Office at Johnson Space at least one year before retrieval and return the technical information exchange among all Center, and possible contribution by the Eu- to Earth. The LAD-C Principal Investigator team members. ♦ ropean Space Agency and several other orga- and Co-Investigators presented overviews on 2 www.orbitaldebris.jsc.nasa.gov Revision of Space Shuttle Wing Leading Edge Reinforced Carbon-Carbon Failure Criteria Based on Hypervelocity Impact and Arc-Jet Testing E. CHRISTIANSEN, J. HYDE, D. LEAR, to burn-through in some areas of the WLE nose failure criteria maps before and after T. PRIOR, & F. LYONS where burn-through can lead to loss-of-ve- the recent changes for STS-114. The reduc- As part of the Shuttle Return-to-Flight hicle (LOV) during reentry. Figure 1 shows tion in allowable damage results in increased (RTF) effort, the NASA Johnson Space the resulting damage caused by a 0.8 mm calculated MMOD risks for future missions, Center’s Hypervelocity Impact Technology diameter aluminum hypervelocity impactor if all other things remain constant. Facility (JSC/HITF) performed hypervel- and subsequent damage growth due to AJ The Shuttle and International Space ocity impact (HVI) testing and analysis of testing. Station (ISS) Programs decided to decrease Shuttle wing leading-edge (WLE) reinforced For STS-107 and previous missions, MMOD impact risks to STS-114 and sub- carbon-carbon (RCC) test samples to update WLE failure threshold consisted of 1 in. di- sequent flights by reversing the orientation WLE threshold failure criteria. After the ameter allowable hole sizes in RCC on the of the ISS during the ISS docking phase of hypervelocity impact tests, the samples were upper surface and ¼ in. hole size on the the Shuttle mission. The change in orienta- exposed to typical reentry heating conditions lower surface.
Recommended publications
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Global Maritime Distress and Safety System (GMDSS) Handbook 2018 I CONTENTS
    FOREWORD This handbook has been produced by the Australian Maritime Safety Authority (AMSA), and is intended for use on ships that are: • compulsorily equipped with GMDSS radiocommunication installations in accordance with the requirements of the International Convention for the Safety of Life at Sea Convention 1974 (SOLAS) and Commonwealth or State government marine legislation • voluntarily equipped with GMDSS radiocommunication installations. It is the recommended textbook for candidates wishing to qualify for the Australian GMDSS General Operator’s Certificate of Proficiency. This handbook replaces the tenth edition of the GMDSS Handbook published in September 2013, and has been amended to reflect: • changes to regulations adopted by the International Telecommunication Union (ITU) World Radiocommunications Conference (2015) • changes to Inmarsat services • an updated AMSA distress beacon registration form • changes to various ITU Recommendations • changes to the publications published by the ITU • developments in Man Overboard (MOB) devices • clarification of GMDSS radio log procedures • general editorial updating and improvements. Procedures outlined in the handbook are based on the ITU Radio Regulations, on radio procedures used by Australian Maritime Communications Stations and Satellite Earth Stations in the Inmarsat network. Careful observance of the procedures covered by this handbook is essential for the efficient exchange of communications in the marine radiocommunication service, particularly where safety of life at sea is concerned. Special attention should be given to those sections dealing with distress, urgency, and safety. Operators of radiocommunications equipment on vessels not equipped with GMDSS installations should refer to the Marine Radio Operators Handbook published by the Australian Maritime College, Launceston, Tasmania, Australia. No provision of this handbook or the ITU Radio Regulations prevents the use, by a ship in distress, of any means at its disposal to attract attention, make known its position and obtain help.
    [Show full text]
  • Updated Analysis of Inmarsat and Iridium Aeronautical Services in the Same Oceanic Airspace
    E.F.C.LaBerge Senior Fellow, Honeywell CNS RTC June 18, 2008 [email protected] Updated Analysis of Inmarsat and Iridium Aeronautical Services in the Same Oceanic Airspace. 1 IEEE/AIAA 26th DASC, October 2007, Paper 213 EFC LaBerge & D. Zeng Purpose and Scope of the Analysis • Investigate Iridium AMSS/AMS(R)S and Inmarsat AMSS/AMS(R)S on separate aircraft in the same oceanic airspace • Analysis is limited to Oceanic Airspace structured following DO-306 guidelines, since FANS-1/A datalink Air Traffic Service (ATS) has widespread approval for operations in oceanic airspace • Conclusions are not applicable to other operational scenarios or airspace, including: - Polar, continental enroute, terminal, approach, and airport surface airspace as defined in Eurocontrol/FAA COCR document; - Simultaneous independent operation of Iridium and Inmarsat AESes on the same aircraft; and - All non-aeronautical terminals and non-aeronautical services 2 Released to ICAO ACP WGM June 18, 2008 Conclusions • The probability of Inmarsat AMSS/AMS(R)S causing a service interruption that would affect the availability of Iridium AMSS/AMS(R)S operating on separate aircraft in oceanic airspace is very small • In oceanic airspace, Inmarsat AMSS/AMS(R)S out of band emissions from one aircraft do not cause harmful interference to Iridium AMSS/AMS(R)S on another aircraft: - The functioning of Iridium AMSS/AMS(R)S is not endangered; - No serious degradation, obstruction or repeated interruption of the operation of Iridium AMSS/AMS(R)S 3 Released to ICAO ACP WGM June 18, 2008 Full disclosure, etc. • This work was based on the volumetric interference approach briefed to AMCP WGA in 1998-2000… • …and supported by Iridium, LLC (the old Iridium).
    [Show full text]
  • Is Iot the Next Industrial Satellite Communication Revolution?
    WHITEPAPER: IS IOT THE NEXT INDUSTRIAL SATELLITE COMMUNICATION REVOLUTION? By Oscar Glottmann, Spacebridge Inc. The Internet of Things (IoT) and associated expected to grow 23 percent annually, and MachineTo-Machine (M2M) connectivity of the 28 billion total devices that will be has been named the next Industrial connected by 2021, close to 16 billion will be Revolution, as it will bring major changes in IoT devices. the way all businesses, governments, and people will interact with each other, as well Other notable forecasts summed up as with the entire world. In this article, we will by Forbes(*2) on November 2016 are explore if IoT/M2M will also bring about the McKinsey’s estimates that the total IoT next Industrial Satellite Communications market size in 2015 was up to $900M, (SATCOM) Revolution. Forecasts for growth growing to $3.7B in 2020 attaining a 32.6% and expected number of IoT/M2M devices CAGR, the General Electric prediction are staggering. Just to take one example, that the Industrial Internet of Things (IoT) Ericsson Mobility Report(*1) beginning investment is expected to top $60 trillion of 2016 predicts IoT will overtake mobile during the next 15 years, and the IHS phones by 2018, and predicts that between forecast predicting that the IoT market will 2015 and 2021 the number of IoT/M2M grow from an installed base of 15.4 billion connected devices will grow 23 percent devices in 2015 to 30.7 billion devices in annually. Furthermore, Ericsson predicts 2020 and 75.4 billion in 2025. the number of IoT connected devices is Predictions are predictions, but one thing is for certain, IoT is going to be big.
    [Show full text]
  • Harnessing the Right Inmarsat Service Successfully for Your Business Manoj Mohindra, Solutions & Sales Engineering, Inmarsat Maritime
    Harnessing the Right Inmarsat Service Successfully for your Business Manoj Mohindra, Solutions & Sales Engineering, Inmarsat Maritime © Inmarsat confidential What I will cover? 1. The Maritime Product Portfolio 2. Inmarsat Adding Value 3. A look at the future of Maritime Communications First things first - INMARSAT! " ! Strong Maritime presence with 32 years of experience " ! 500,000 Global terminals •! 250,000 maritime terminals •! >30,000 FleetBroadband active installations " ! The only GMDSS provider for Maritime " ! Future secure, Alphasat & Global Xpress " ! We are the Gold Standard – for all our Markets. Inmarsat confidential 1. Maritime Product Portfolio (a) Networks / Satellites (b) Terminals (c) Unique Capability Committed to servicing User Needs Realities of today & into the future I- I- I- AlphaSat Global Xpress 4 4 4 !""#$ !""%$ !""&$ !""'$ !""($ !"")$ !""*$ !"+"$ !"++$ !"+!$ !"+#$ !"+%$ !"+&$ !"+'$ !"+($ !"+)$ " ! L-band to remain a major component of Inmarsat services Future Needs driven by requirements for: " ! A new generation of broadband MSS at Ka-band •! high bandwidth demand, •! worldwide coverage, " ! Independent from L-band •! dynamic / flexible resource mgnt. constellation, but integrated as a service offering Provide the capacity where it is needed, when it is needed! " ! Life Expectancies into late 2020’s © Inmarsat confidential a1. Existing & Evolved I-2 & I-3 Satellite Network (8) a2. Existing & Evolved (E&E) (I2 & I3 Satellites) 7 a3. Three Inmarsat BGAN I-4 Satellites F3* F2 F1 F3* 3 Satellites at 53°W, 64°E
    [Show full text]
  • Inmarsat Mini-C Mobile Earth Station
    INMARSAT MINI-C MOBILE EARTH STATION MODEL FELCOM 16 SAFETY INSTRUCTIONS WARNING CAUTION Do not open the equipment. Use the proper fuse. Hazardous voltage which can Use of a wrong fuse can result in fire or cause electrical shock, burn permanent damage to the equipment. or serious injury exists inside the equipment. Only qualified WARNING LABEL personnel should work inside A warning label is attached to the the equipment. communication unit. Do not remove the label. If the label is missing or damaged, Hazardous microwave. contact your dealer about replacement. Do not approach within 60 cm of the antenna radome WARNING Name: Warning Label (1) when it is transmitting. To avoid electrical shock, do not Type: 86-003-1011 remove cover. No user-serviceable Code No.: 100-236-741 Microwave radiation can be parts inside. harmful to the human body, particularey the eyes. Radiation Level At 10W/m 2 60 cm Do not disassemble or modify the equipment. Fire, electrical shock or serious injury can result. Turn off the power immediately if water leaks into the equipment or the equip- ment is emitting smoke or fire. Continued use of the equipment can cause fire or electrical shock. Any repair work must be done by a licensed radio technician. Improper repair work can cause electrical shock or fire. i TABLE OF CONTENTS FOREWORD.........................................................................................................vi SYSTEM CONFIGURATION ..............................................................................viii INMARSAT C SYSTEM OVERVIEW
    [Show full text]
  • PRFP-11) & Interconnectivity Workshop 26-30 November 2019, Apia, SAMOA
    11th APT Policy and Regulation Forum for Pacific (PRFP-11) & Interconnectivity Workshop 26-30 November 2019, Apia, SAMOA Workshop Topic ENABLERS FOR A BETTER CONNECTED PACIFIC - New Satellite Technologies and Services (MSS, ESIM and LEOs) Dr Bob Horton Consultant Satellite Industry ENABLERS FOR A BETTER CONNECTED PACIFIC - New Satellite Technologies and Services (MSS and LEOs) CONTENTS • Examples of progress : MSS, ESIM – Inmarsat LEOs – OneWeb • Pacific Needs - understanding and participating in the regional/global environment - the Pacific : a “Collection of Islands” or an “Island Collective”? - opportunities overdue in APAC Inmarsat use of spectrum L band Ka band User links: 1626.5-1660.5 MHz ↑, 1525-1559 Feeder link ↑ : 27.5 – 30.0 GHz MHz↓ Feeder link↓ : 17.7 – 20.2 GHz Extended L-band: User link ↑ : 29.0 – 30.0 GHz User link↓ : 19.2 – 20.2 GHz User links: 1668-1675 MHz ↑, 1518 MHz-1525 MHz ↓ Used by Inmarsat Global Express satellites S band Used by Inmarsat-4 satellites and Alphasat Feeder link ↑ : 27.5 – 29.5 GHz Feeder link↓ : 17.7 – 19.7 GHz User link ↑ 1980-2010MHz Q/V band User link↓ : 2170-2200MHz C band 37.5-42.5 GHz ↓ Used by Europasat Feeder links for L-band satellites operate in 47.2-50.2 GHz + 50.4-51.4 GHz ↑ the bands 3550 – 3700 MHz and 6425 – - Planned for future satellites to free 6575 MHz through more than 20 Land Earth Stations up Ka-band for user terminals TT&C operated in standard C-band on most - Developmental payload on Alphasat Inmarsat satellites Inmarsat and Extended L-band Extended L-band will be available
    [Show full text]
  • High Throughput Ku-Band for Aero Applications
    WHITE PAPER High Throughput Ku-band for Aero Applications 1 Summary Recent advancements in high throughput Ku-band satellites will allow commercial Ku-band aeronautical mobile satellite systems (AMSS) to equal or exceed commercial Ka-band AMSS systems on cost and performance. The first example of this is Panasonic’s acquisition of capacity on Intelsat-29e satellite, the first satellite to use Intelsat’s Epic platform. Ku-band currently dominates the AMSS broadband market. Systems like Panasonic’s eXConnect, Row44 and Yonder provide service to the commercial market while other providers such as Tachyon and Boeing serve the government market. All of these systems use conventional continental-scale wide beams that are leased from Fixed Satellite Service (FSS) providers like Intelsat. However, in several years the dominance of Ku-band in the AMSS market will be challenged by forthcoming Ka-band systems, such as Inmarsat-5. These systems use customized satellites with multiple spot beams to offer enhanced performance over conventional wide beam Ku-band. This paper demonstrates that the key to the high throughput of Ka systems such as Inmarsat-5 is not the frequency of operation, but rather the use of spot beams. This means a Ku-band satellite using similarly sized spot beams can equal or exceed the performance of Ka-band satellites. Intelsat’s Epic platform takes full advantage of this fact. Panasonic and Intelsat have collaborated on Intelsat-29e, the first Epic satellite, to serve the needs of the AMSS market in North America and the North Atlantic – two of the densest aviation markets in the world.
    [Show full text]
  • Federal Communications Commission FCC 09-51
    Federal Communications Commission FCC 09-51 FCC REPORT TO CONGRESS AS REQUIRED BY THE ORBIT ACT TENTH REPORT Adopted: June 12, 2009 Released: June 15, 2009 Federal Communications Commission FCC 09-51 FCC REPORT TO CONGRESS AS REQUIRED BY THE ORBIT ACT TENTH REPORT This report is submitted in accordance with Section 646 of the Open-Market Reorganization for the Betterment of International Telecommunications Act (the “ORBIT Act”).1 Section 646 states: (a) ANNUAL REPORTS - The President and the Commission shall report to the Committees on Commerce and International Relations of the House of Representatives and the Committees on Commerce, Science, and Transportation and Foreign Relations of the Senate within 90 calendar days of the enactment of this title, and not less than annually thereafter, on the progress made to achieve the objectives and carry out the purposes and provisions of this title. Such reports shall be made available immediately to the public. (b) CONTENTS OF REPORTS - The reports submitted pursuant to subsection (a) shall include the following: (1) Progress with respect to each objective since the most recent preceding report. (2) Views of the Parties with respect to privatization. (3) Views of the industry and consumers on privatization. (4) Impact privatization has had on United States industry, United States jobs, and United States industry’s access to the global marketplace. I. Progress as to Objectives and Purposes The purpose of the ORBIT Act is “to promote a fully competitive global market for satellite communication services for the benefit of consumers and providers of satellite services and equipment by fully privatizing the intergovernmental satellite organizations, INTELSAT and Inmarsat.”2 The ORBIT Act, as originally passed in 2000: (1) mandates the privatization of INTELSAT and Inmarsat; (2) establishes criteria to ensure a pro-competitive privatization; (3) requires the Commission to determine whether INTELSAT, Inmarsat, and the INTELSAT spin-off New Skies Satellites N.V.
    [Show full text]
  • Inmarsat Plc Reports First Quarter Results 2015
    Inmarsat plc reports First Quarter Results 2015 Solid operational performance; on track for launch of third GX satellite London, UK: 6 May 2015. Inmarsat plc (LSE: ISAT.L), the leading provider of global mobile satellite communications services, today provided the following unaudited information for the three months ended 31 March 2015. First Quarter Headlines Total revenues $304.8m (Q1 2014: $344.7m) o Maritime up $1.6m to $149.8m (+1.1%) o Government down $12.7m to $66.8m (-16.0%) o Enterprise down $5.5m to $38.9m (-12.4%); underlying growth (excl. disposal) +6.9% o Aviation up $4.9m to $27.1m (+22.1%) o Revenues from LightSquared down $27.8m to $17.5m (Q1 2014: $45.3m) Wholesale Mobile Satellite Service (MSS) revenues $198.2m, up 3.5% (Q1 2014: $191.5m) Total EBITDA1 $176.8m (Q1 2014: $209.9m) Profit after tax $77.4m (Q1 2014: $100.2m) Operational Highlights I-5 F2 launched and now deployed successfully into geostationary orbit I-5 F3 shipped to Baikonur and on track for launch in early June Key voice and data services in the EMEA region transitioned successfully to Alphasat Significant progress made in Aviation contracts and S-band licensing First Inmarsat Developer Conference held, to drive growth of innovative solutions Rupert Pearce, Inmarsat’s Chief Executive Officer, commented, “This was a solid quarter of trading, although starting slowly, in particular in Maritime and certain Government contracts. However momentum developed well towards the end of the period, especially in Maritime, with strong growth in FleetBroadband subscribers and ARPU as well as XpressLink installations.
    [Show full text]
  • Inmarsat Aviation
    THE CORRECTLY CONNECTED AIRCRAFT REALISING THE FULL POTENTIAL OF THE COMPLETE CONNECTED FLEET CONTENTS THE CORRECTLY CONNECTED AIRCRAFT Realising the full potential of the complete connected fleet Introduction 04 Executive summary 06 The three ICAO data domains 08 Evaluating the features of satcom services 13 The right service for the right type of data: the correctly connected aircraft 17 The right partner for the complete connected aircraft 18 Appendix 20 02 03 INTRODUCTION: THE COMPLETE CONNECTED AIRCRAFT TRANSFORMS THE ECONOMICS OF COMMERCIAL AVIATION Michael E. Rack, Senior VP, Core Business at Inmarsat Aviation The future of connected aviation is changing. Expectations of connectivity performance are ever-increasing and, by 2035 1, more passengers will be flying each year than the number of people living on the ground right now. That’s more than 7 billion passengers. Recent research indicates that today 6 out of 10 passengers believe inflight Wi-Fi is no longer a luxury, but a necessity 2 – and we believe that proportion will be even higher in coming years. But far from being a challenge, connectivity in the operations will use the power of today’s IP-based cabin represents opportunity. Airlines are quickly flight deck connectivity to offer real-time, secure coming to the realisation that inflight broadband information and communications to airlines and opens new horizons of passenger value-creation. controllers. This will drive further efficiency gains In 2018, connected ancillary sales will be worth in flight operations and airport operations and $784m to airlines and independent research from maintenance – potentitally saving many more the London School of Economics (LSE) indicates this billions of dollars industry-wide.
    [Show full text]
  • Topsat: Demonstrating High Performance from a Low Cost Satellite
    TOPSAT: DEMONSTRATING HIGH PERFORMANCE FROM A LOW COST SATELLITE W A Levett 1*, J. Laycock 1, E Baxter 1 1 QinetiQ, Cody Technology Park, Room 1058, A8 Building, Ively Road, Farnborough GU14 0LX, UK [email protected] KEY WORDS: Optical, Multispectral, Mobile, High resolution, Imagery, Small/micro satellites, Pushbroom, Disaster ABSTRACT: Advances in technology continue to yield improvements in satellite based remote sensing but can also be used to provide existing capability at a lower cost. This is the philosophy behind the TopSat demonstrator mission, which was built by a UK consortium led by QinetiQ, and including SSTL, RAL and Infoterra. The project is funded jointly by the British National Space Centre (BNSC) and UK MoD. TopSat has demonstrated the ability to build a low cost satellite capable of generating high quality imagery (2.8m panchromatic resolution on nadir, 5.6m multispectral). Since it was successfully launched on 27th October 2005, it has down-linked imagery daily to a fixed QinetiQ ground station in the UK in order to support a wide range of users. Rapid data delivery has also been demonstrated using a low cost mobile ground station. The main achievement of the project is the fact that this capability has been achieved for such a relatively low cost. The cost of the entire programme (including the imager and all other development, build, launch, commissioning and ground segment costs) has been kept within a budget of approximately 20M euros. TopSat enables a low cost, whole mission approach to high-timeliness imagery. The low cost of the satellite makes a small constellation feasible for improved revisit times.
    [Show full text]