47 CFR Ch. I (10–1–97 Edition) § 80.223

Total Page:16

File Type:pdf, Size:1020Kb

47 CFR Ch. I (10–1–97 Edition) § 80.223 § 80.223 47 CFR Ch. I (10±1±97 Edition) (3) The interval between successive able to be manually keyed. If provi- tones must not exceed 4 milliseconds; sions are made for automatically (4) The amplitude ratio of the tones transmitting the radiotelegraph alarm must be flat within 1.6 dB; signal or the radiotelegraph distress (5) The output of the device must be signal, such provisions must meet the sufficient to modulate the associated requirements in subpart F of this part. transmitter for H2B emission to at (d) Any EPIRB carried as part of a least 70 percent, and for J2B emission survival craft station must comply to within 3 dB of the rated peak enve- with the specific technical and per- lope power; formance requirements for its class (6) Light from the device must not contained in subpart V of this chapter. interfere with the safe navigation of the ship; [51 FR 31213, Sept. 2, 1986, as amended at 53 (7) After activation the device must FR 8905, Mar. 18, 1988; 53 FR 37308, Sept. 26, automatically generate the radio- 1988; 56 FR 11516, Mar. 19, 1991] telephone alarm signal for not less than 30 seconds and not more than 60 § 80.225 Requirements for selective seconds unless manually interrupted; calling equipment. (8) After generating the radio- This section specifies the require- telephone alarm signal or after manual ments for voluntary digital selective interruption the device must be imme- calling (DSC) equipment and selective diately ready to repeat the signal; calling equipment installed in ship and (9) The transmitter must be auto- coast stations. Reference to any CCIR matically switched from the stand-by Recommendation in this section is to condition to the transmit condition at the most recent CCIR approved Rec- the start and return to the stand-by ommendation that does not prevent condition at the conclusion of the ra- the use of existing equipment. diotelephone alarm signal. (a) DSC equipment voluntarily in- (d) Any device used by a station to automatically generate the radio- stalled in coast or ship stations must telephone alarm signal must be type meet either the requirements of CCIR accepted by the Commission. Recommendation 493 (including only equipment classes A, B, D, and E) or [51 FR 31213, Sept. 2, 1986, as amended at 54 RTCM Paper 56±95/SC101±STD. DSC FR 40059, Sept. 29, 1989] equipment must not be used with the § 80.223 Special requirements for sur- sensors referred to in § 80.179(e)(2). DSC vival craft stations. equipment used on compulsorily fitted (a) Survival craft stations capable of ships must meet the requirements con- transmitting on: tained in subpart W for GMDSS. (1) 500 kHz must be able to operate (b) Manufacturers of Class C DSC with class A2A and A2B or H2A and equipment to be used on United States H2B emissions; vessels must affix a clearly discernible (2) 2182 kHz must be able to operate permanent plate or label visible from with A2B and A3E or H2B and H3E and the operating controls containing the J2B and J3E emissions; following: (3) 8364 kHz must be able to operate Warning. This equipment is designed to with class A2A or H2A emission; and generate a digital maritime distress and (4) 121.500 MHz must be able to oper- safety signal to facilitate search and rescue. ate with A3E or A3N emission. To be effective as a safety device, this equip- (b) Survival craft stations must be ment must be used only within communica- able to receive the frequency and types tion range of a shore-based VHF marine of emission which the transmitter is channel 70 distress and safety watch system. capable of using. Where the transmit- The range of the signal may vary but under ter frequency is 8364 kHz the receiver normal conditions should be approximately must be able to receive A1A, A2A and 20 nautical miles. H2A emissions throughout the 8320±8745 (c) Selective calling equipment, other kHz band. than that designed in accordance with (c) Survival craft transmitters oper- paragraph (a) of this section, is author- ating on 500 kHz or on 8364 kHz must be ized as follows: 58 VerDate 02<DEC>97 14:49 Jan 22, 1998 Jkt 174183 PO 00001 Frm 00054 Fmt 8010 Sfmt 8010 C:\174183.TXT 174183 Federal Communications Commission § 80.251 (1) Equipment used in conjunction (b) Transmissions must sweep lin- with the Automated Maritime Tele- early in frequency at a rate of at least communications System (AMTS) in 60 kHz per second, occupying any 3 kHz the band 216±220 MHz, bandwidth for less than 50 milli- (2) Equipment used to perform a se- seconds; lective calling function during narrow- (c) The transmitter shall scan the band direct-printing (NB±DP) oper- band no more than four times per hour; ations in accordance with CCIR Rec- (d) Transmissions within 6 kHz of the ommendation 476 or 625, and following protected frequencies and (3) Equipment functioning under the frequency bands must not exceed 10 µW provisions of § 80.207(a) includes the peak ERP: brief use of radiotelegraphy, including (1) Protected frequencies (kHz) keying only the modulating audio fre- 2091.0 4188.0 6312.0 12290.0 16420.0 quency, tone signals, and other signal- 2174.5 4207.5 8257.0 12392.0 16522.0 ling devices to establish or maintain 2182.0 5000.0 8291.0 12520.0 16695.0 communications provided that: 2187.5 5167.5 8357.5 12563.0 16750.0 (i) These signalling techniques are 2500.0 5680.0 8364.0 12577.0 16804.5 not used on frequencies designated for 3023.0 6215.0 8375.0 15000.0 20000.0 general purpose digital selective call- 4000.0 6268.0 8414.5 16000.0 25000.0 ing (DSC) and distress and safety DSC 4177.5 6282.0 10000.0 calling as listed in § 80.359; (2) Protected bands (kHz) (ii) The authorized radiotelephone emission bandwidth is not exceeded; 4125.0±4128.0 (iii) Documentation of selective call- 8376.25±8386.75 ing protocols must be available to the 13360.0±13410.0 25500.0±25670.0 general public; and, (iv) Harmful interference is not (e) The instantaneous signal, which caused to stations operating in accord- refers to the peak power that would be ance with the International Radio Reg- measured with the frequency sweep ulations. stopped, along with spurious emissions generated from the sweeping signal, [54 FR 10009, Mar. 9, 1989, as amended at 62 FR 40306, July 28, 1997] must be attenuated below the peak car- rier power (in watts) as follows: § 80.227 Special requirements for pro- (1) On any frequency more than 5 Hz tection from RF radiation. from the instantaneous carrier fre- As part of the information provided quency, at least 3 dB; with transmitters for ship earth sta- (2) On any frequency more than 250 tions, manufacturers of each such unit Hz from the instantaneous carrier fre- must include installation and operat- quency, at least 40 dB; and ing instructions to help prevent human (3) On any frequency more than 7.5 exposure to radiofrequency (RF) radi- kHz from the instantaneous carrier fre- ation in excess of the RF exposure quency, at least 43 + 10log10 (peak guidelines specified in § 1.1307(b) of the power in watts) db. Commission's Rules. [62 FR 40307, July 28, 1997] [53 FR 28225, July 27, 1988] Subpart FÐEquipment Authoriza- § 80.229 Special requirements for auto- tion for Compulsory Ships matic link establishment (ALE). Brief signalling for the purposes of § 80.251 Scope. measuring the quality of a radio chan- (a) This subpart gives the general nel and thereafter establishing commu- technical requirements for type accept- nication shall be permitted within the ance of equipment used on compulsory 2 MHz±30 MHz band. Public coast sta- ships. Such equipment includes radio- tions providing high seas service are telegraph transmitters, radiotelegraph authorized by rule to use such signal- auto alarms, automatic-alarm-signal ling under the following conditions: keying devices, survival craft radio (a) The transmitter power shall not equipment, watch receivers, and radar. exceed 100 W ERP; 59 VerDate 02<DEC>97 14:49 Jan 22, 1998 Jkt 174183 PO 00001 Frm 00055 Fmt 8010 Sfmt 8010 C:\174183.TXT 174183.
Recommended publications
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) . AE (NASA-TM-74770) SATELLITES FOR DISTRESS 77-28178 ALERTING AND LOCATING; REPORT BY TNTERAG .ENCY COMMITTEE FOR SEARCH AND RESCUE !^ !I"^ U U AD HOC WORKING GROUP Final Report. ( National. Unclas Aeronautics and Space Administration) 178 p G3 / 15 41346 0" INTERAGENCY COMMITTEE FOR SEARCH AND RESCUE AD HOC WORKING GROUP REPORT ON SATELLITES FOR DISTRESS ALERTING AND LOCATING FINAL REPORT OCTOBER 1976 r^> JUL 1977 RASA STI FACIUIV INPUT 3DNUH ^;w ^^^p^112 ^3 jq7 Lltl1V797, I - , ^1^ , - I t Y I FOREWORD L I^ This report was prepared to document the work initiated by the ad hoc working group on satellites for search and rescue (SAR). The ad hoc L working group on satellites for distress alerting and locating (DAL), formed 1 in November 1975 by agreement of the Interagency Committee on Search and Rescue (ICSAR), consisted of representatives from Maritime Administration, NASA Headquarters, Goddard Space Flight Center, U.S.
    [Show full text]
  • The 630 Meter Band
    The 630 Meter Band Introduction The 630 meter Amateur Radio band is a frequency band allocated by the International Telecommunication Union (ITU) to the Amateur Service, and ranges from 472 to 479 kHz, or equivalently 625.9 to 635.1 meters wavelength. It was formally allocated to the Amateur Service as part of the Final Acts of the 2012 World Radiocommunication Conference (WRC-12). Once approved by the appropriate national regulatory authority, the band is available on a secondary basis to countries in all ITU regions with the limitation that Amateur stations have a maximum radiated power of 1 Watt effective isotropic radiated power (EIRP). Stations more than 800 km from certain countries (listed below) may be permitted to use 5 Watts EIRP however. The ITU Final Acts took effect 1 January 2013 and after public consultation on all of the ITU allocation changes contained it, the 630 meter band was added to the Canada Table of Frequencies in 2014. Several countries had previously allocated the WRC-12 band to Amateurs domestically. Several other countries had also already authorized temporary allocations or experimental operations on nearby frequencies. The band is in the Medium Frequency (MF) region, within the greater 415–526.5 kHz maritime band. The first International Wireless Telegraph Convention, held in Berlin on November 3, 1906, designated 500 kHz as the maritime international distress frequency. For nearly 100 years, the “600-meter band” (495 to 510 kHz) served as the primary calling and distress frequency for maritime communication, first using spark transmissions, and later CW. In the 1980s a transition began to the Global Maritime Distress Signaling System (GMDSS), which uses UHF communication via satellite.
    [Show full text]
  • Global Maritime Distress and Safety System (GMDSS) Handbook 2018 I CONTENTS
    FOREWORD This handbook has been produced by the Australian Maritime Safety Authority (AMSA), and is intended for use on ships that are: • compulsorily equipped with GMDSS radiocommunication installations in accordance with the requirements of the International Convention for the Safety of Life at Sea Convention 1974 (SOLAS) and Commonwealth or State government marine legislation • voluntarily equipped with GMDSS radiocommunication installations. It is the recommended textbook for candidates wishing to qualify for the Australian GMDSS General Operator’s Certificate of Proficiency. This handbook replaces the tenth edition of the GMDSS Handbook published in September 2013, and has been amended to reflect: • changes to regulations adopted by the International Telecommunication Union (ITU) World Radiocommunications Conference (2015) • changes to Inmarsat services • an updated AMSA distress beacon registration form • changes to various ITU Recommendations • changes to the publications published by the ITU • developments in Man Overboard (MOB) devices • clarification of GMDSS radio log procedures • general editorial updating and improvements. Procedures outlined in the handbook are based on the ITU Radio Regulations, on radio procedures used by Australian Maritime Communications Stations and Satellite Earth Stations in the Inmarsat network. Careful observance of the procedures covered by this handbook is essential for the efficient exchange of communications in the marine radiocommunication service, particularly where safety of life at sea is concerned. Special attention should be given to those sections dealing with distress, urgency, and safety. Operators of radiocommunications equipment on vessels not equipped with GMDSS installations should refer to the Marine Radio Operators Handbook published by the Australian Maritime College, Launceston, Tasmania, Australia. No provision of this handbook or the ITU Radio Regulations prevents the use, by a ship in distress, of any means at its disposal to attract attention, make known its position and obtain help.
    [Show full text]
  • 187 Part 87—Aviation Services
    Federal Communications Commission Pt. 87 the ship aboard which the ship earth determination purposes under the fol- station is to be installed and operated. lowing conditions: (b) A station license for a portable (1) The radio transmitting equipment ship earth station may be issued to the attached to the cable-marker buoy as- owner or operator of portable earth sociated with the ship station must be station equipment proposing to furnish described in the station application; satellite communication services on (2) The call sign used for the trans- board more than one ship or fixed off- mitter operating under the provisions shore platform located in the marine of this section is the call sign of the environment. ship station followed by the letters ``BT'' and the identifying number of [52 FR 27003, July 17, 1987, as amended at 54 the buoy. FR 49995, Dec. 4, 1989] (3) The buoy transmitter must be § 80.1187 Scope of communication. continuously monitored by a licensed radiotelegraph operator on board the Ship earth stations must be used for cable repair ship station; and telecommunications related to the (4) The transmitter must operate business or operation of ships and for under the provisions in § 80.375(b). public correspondence of persons on board. Portable ship earth stations are authorized to meet the business, oper- PART 87ÐAVIATION SERVICES ational and public correspondence tele- communication needs of fixed offshore Subpart AÐGeneral Information platforms located in the marine envi- Sec. ronment as well as ships. The types of 87.1 Basis and purpose. emission are determined by the 87.3 Other applicable rule parts.
    [Show full text]
  • Low-Power Radio-Frequency Devices Technical Regulations
    Telecom Technical Regulations Low Power 0002 (LP0002) Test Requirements 10 January, 2018 revised Low-power Radio-frequency Devices Technical Regulations January, 2018 - 0 - Contents Preface 1 TERMINOLOGY ................................................................................................................................ 3 2 GENERAL REQUIREMENTS ............................................................................................................ 5 3 CONFORMANCE SPECIFICATIONS (BY FREQUENCY RANGES) .................................................. 8 3.1 Frequency bands:1.705 MHz - 37 MHz. .......................................................................................... 8 3.2 Operation within the band 13.553 MHz〜13.567 MHz ..................................................................... 8 3.3 Operation within the band: 26.957 MHz〜27.283 MHz .................................................................... 8 3.4 Operation within the band: 40.66 MHz〜40.70 MHz and above 70 MHz .......................................... 9 3.5 Operation within the band: 49.82 MHz〜49.90MHz ....................................................................... 11 3.6 Operation within the band 72.0 MHz〜73.0 MHz ........................................................................... 11 3.7 Operation within the band: 88.0 MHz〜108.0MHz ......................................................................... 12 3.8 Operation within the bands: 174.0 MHz〜216.0 MHz, 584 MHz〜608 MHz ................................... 12 3.9 Operation
    [Show full text]
  • The 3-Minute Radio Silence Markers on Your TWCO®
    The 3-minute radio silence markers on your TWCO® All TWCO® maritime watches are equipped with this specific design feature and we will gladly explain the function of these markers. First: where does it come from? It all started quite some time ago, the early days of radio communication, and it has to do with maritime radiotelephone communication in distress situations on the typical marine MF bands: the 2182 and 500 KHz international bands for emergency and distress. In fact the sinking of the “RMS TITANIC” triggered a lot of safety rules and this is believed to be one of them. Why a radio silence period? All stations using 2182 KHz were required to maintain a strictly enforced three-minute silence and listening period twice each hour, starting at h+00, h+30. This allowed any station with distress, urgent or safety traffic the best chance of being heard at that time, even if they were at some distance from other stations, operating on reduced battery power or perhaps reduced antenna efficiency, as for example from a dismasted vessel. As a visual aide-memoire, a typical clock in a ship's radio room (see picture) would have these silence periods marked by shading the sectors from h+00 to h+03 and from h+30 to h+33 in green. Similar sectors were marked in red for what used to be the corresponding silence and listening period on 500 KHz between h+15 and h+18 and from h+45 to h+48. Now and into the future. These silence periods are no longer required as the introduction of GMDSS (Global Maritime Distress Safety System) has produced alternative automatic watch keeping systems and the 500 kHz band is no longer in use for maritime traffic.
    [Show full text]
  • Modeling and Data Analysis of 50 to 5000 Khz Radio Wave Propagation in Coal Mines
    USBM H0346045 TECHNICAL SERVICES FOR MINE COMMUNICATIONS RESEARCH MODELLING AND DATA ANALYSIS OF 50 to 5000 kHz RADIO WAVE PROPAGATION IN COAL MINES SUPPLEMENT TO FINAL REPORT Robef) L. Lagace - Task Leader Alfred G. Emslie, Michael A. Grossman UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES USBM CONTRACT H0346045 Task Order No. 4 FEBRUARY 1980 ARTHUR D. LITTLE, INC. Cambridge, Massachusetts The view and conclusions contained in this document are thou, of the authors and should not be interpreted as necessarily representing the official policies or recomm~atiomof the Interior Depahent's Bureau of Mines or of the U.S. Govern- ment. TECHNICAL SERVICES FOR MINE COMMUNICATIONS RESEARCH MODELLING AND DATA ANALYSIS OF 50 to 5000 kHz RADIO WAVE PROPAGATION IN COAL MINES SUPPLEMENT TO FINAL REPORT Robert L. Lagace, Task Leader Alfred G. Emslie, Michael A. Grossman ARTHUR D. LITTLE, INC. CAMBRIDGE, MASSACHUSETTS 02140 C-78453 The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies or recommendations of the Interior Department's Bureau of Mines or of the U. S. Government. USBM CONTRACT H0346045 TASK ORDER NO. 4 FEBRUARY 1980 UNITED STATES DEPARTMENT OF Ti INTERIOR BUREAU OF MINES Arthur D Littlelnc PREFACE This supplement to the final report is a collection of interim and monthly reports and working memoranda prepared during the course of this program to document the progress, methods and results of the work. The supplement is divided into the self-contained sections briefly described below. I. SELECTED MONTHLY TECHNICAL LETTER REPORTS - This section is a collec- tion of selected monthly technical letter reports that briefly summarizes the chronological development of the analyses and results, including the different concepts, theoretical approaches, and methods of data reduction and analysis explored, and the discoveries, insights and findings made along the way.
    [Show full text]
  • 1.1 \\\\\1.25 111111.4 111111.6~
    If you have issues viewing or accessing this file contact us at NCJRS.gov. 'I i.; ',~ This microfiche was produced from documents received for INDIVIDUAL TECHNICAL ASSISTANCE REPORT inclusion in the NCJRS data base. Since NCJRS cannot exercise '" In Response to a Request for Technical Assistance control over the physical condition of the documents submitted, :~ ~ '. by the the individual hame quality, will vary. The resolution chart on East Central Iowa Area Crime Commission this frame may be used to evaluate th~ document quality. .--------------------. ~ \ 11 1.0 I : 1.1 _ 111111.8! \\\\\1.25 111111.4 111111.6~ November 16, 1973 ;1=' l _.-, \ ; MICROCOPY RESOLUTION TEST CHART :i= 3 NATIONAL BUREAU OF STANDARDS-1953-A '1 y __ .._I'lll •.. _______._ .... _ .. I' .l II~' ~l ! -- Microfilming procedures used to create this fiche comply with the standards set forth in 41CFR 101·11.504 Points of view or opinions stated in this document are f= those of the author[sj and do not represent the official :! -, Prepared by: position or policies of the U.S. Department of Justice. Public Administration Service 1313 East 60th Street U.S. DEPARTMENT OF JUSTICE Chicago, Winois 60637 LAW ENFORCEMENT ASSISTANCE ADMINISTRATION (Per Contract J-LEAA-OlS-72) NATIONAL CRIMINAL JUSllCEREFERENCE SERVICE I j t WASHINGTON,. D.C. 20531 I ! i " .~ ", . ft .... :1~, I. PRELIMINARY INFORMATION A. Consultant Assigned: A. Robert Patzlaff Communications Consultant B. Date Assignment Received: August 31, 1973 C. Date of Contact with LEA A Regional Coordinator: September 7, 1973 D. Dates of On-Site Consultation: October 8-11, 1973 E.
    [Show full text]
  • REPORT ITU-R M.2478-0 – Spectrum Needs for the Amateur Service in The
    Report ITU-R M.2478-0 (09/2019) Spectrum needs for the amateur service in the frequency band 50-54 MHz in Region 1 and sharing with mobile, fixed, radiolocation and broadcasting services M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2478-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU- R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • United Kingdom Frequency Allocation Table (UKFAT) Details the Uses (Referred to As 'Allocations') to Which Various Frequency Bands Are Put to the UK
    1 Preface Introduction Radio waves, used by millions of people world-wide, do not conveniently stop at political or administrative boundaries. Without adequate planning and management, radio signals from different users and services would interfere with each other and radio could become useless as a means of communication. The United Kingdom Frequency Allocation Table (UKFAT) details the uses (referred to as 'allocations') to which various frequency bands are put to the UK. It also shows the internationally agreed spectrum allocations of the International Telecommunication Union (ITU). The ITU divided the world into three regions. These can be seen in the map below. The United Kingdom is within Region 1. Map of ITU-R Regions Changes to the international allocation of frequencies worldwide is agreed at World Radio Conferences and are incorporated into the Radio Regulations. The Radio Regulations have treaty status following ratification by ITU Member States, and contain the procedural regulations for notification, coordination and registration of radio frequencies so that harmful interference between radio stations of different countries is avoided. They also contain the international Table of Allocations for bands of frequencies to be used for providing specific radiocommunication services. These rules are detailed as footnotes in the Radio Regulations. Direct references have been made within the UKFAT to those footnotes, taken from the current ITU Radio Regulations, to the International Table which apply without qualification to the United Kingdom radio services or frequency bands concerned. All remaining International footnotes not specifically mentioned in the Table or in footnotes thereto do not therefore apply in the United Kingdom.
    [Show full text]
  • THESIS LOW-NOISE, LOW-POWER TRANSIMPEDANCE AMPLIFIER for INTEGRATED ELECTROCHEMICAL BIOSENSOR APPLICATIONS Submitted by William
    THESIS LOW-NOISE, LOW-POWER TRANSIMPEDANCE AMPLIFIER FOR INTEGRATED ELECTROCHEMICAL BIOSENSOR APPLICATIONS Submitted by William Wilson Department of Electrical and Computer Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Summer 2014 Master’s Committee: Advisor: Tom Chen Ali Pezeshki Chuck Henry ABSTRACT LOW-NOISE, LOW-POWER TRANSIMPEDANCE AMPLIFIER FOR INTEGRATED ELECTROCHEMICAL BIOSENSOR APPLICATIONS Biosensor devices have found an increasingly broad range of applications including clinical, biological, and even pharmaceutical research and testing. These devices are useful for detecting chemical compounds in solutions and tissues. Current visual or optical methods include fluorescence and bio/chemiluminescence based detection. These methods involve adding luminescent dyes or fluorescent tags to cells or tissue samples to track movement in response to a stimulus. These methods often harm living tissue and interfere with natural cell movement and function. Electrochemical biosensing methods may be used without adding potentially harmful dyes or chemicals to living tissues. Electrochemical sensing may be used, on the condition that the desired analyte is electrochemically active, and with the assumption that other compounds present are not electrochemically active at the reduction or oxidation potential of the desired analyte. A wide range of analytes can be selectively detected by specifically setting the potential of the solution using a potentiostat. The resulting small-magnitude current must then be converted to a measurable voltage and read using a low-noise transimpedance amplifier. To provide spatial resolution on the intra-cellular level, a large number of electrodes must be used. To measure electrochemical signals in parallel, each electrode requires a minimum of a transimpedance amplifier, as well as other supporting circuitry.
    [Show full text]
  • International Radio Regulations 5.53 Administrations Authorizing the Use of Frequencies Below 9 Khz Shall Ensure That No Harmful
    4 International Radio Regulations 5.53 Administrations authorizing the use of frequencies below 9 kHz shall ensure that no harmful interference is caused thereby to the services to which the bands above 9 kHz are allocated. 5.54 Administrations conducting scientific research using frequencies below 9 kHz are urged to advise other administrations that may be concerned in order that such research may be afforded all practicable protection from harmful interference. 5.55 Additional allocation: in Armenia, Azerbaijan, the Russian Federation, Georgia, Kyrgyzstan, Tajikistan and Turkmenistan, the band 14-17 kHz is also allocated to the radionavigation service on a primary basis. (WRC-07) 5.56 The stations of services to which the bands 14-19.95 kHz and 20.05-70 kHz and in Region 1 also the bands 72-84 kHz and 86-90 kHz are allocated may transmit standard frequency and time signals. Such stations shall be afforded protection from harmful interference. In Armenia, Azerbaijan, Belarus, Bulgaria, the Russian Federation, Georgia, Kazakhstan, Mongolia, Kyrgyzstan, Slovakia, Tajikistan and Turkmenistan, the frequencies 25 kHz and 50 kHz will be used for this purpose under the same conditions. (WRC-07) 5.57 The use of the bands 14-19.95 kHz, 20.05-70 kHz and 70-90 kHz (72-84 kHz and 86-90 kHz in Region 1) by the maritime mobile service is limited to coast radiotelegraph stations (A1A and F1B only). Exceptionally, the use of class J2B or J7B emissions is authorized subject to the necessary bandwidth not exceeding that normally used for class A1A or F1B emissions in the band concerned.
    [Show full text]