Libra Satellite Network

Total Page:16

File Type:pdf, Size:1020Kb

Libra Satellite Network Libra Satellite Network Reference Guide Nanometrics Inc. Kanata, Ontario Canada © 1999–2004 Nanometrics Inc. All Rights Reserved. Libra Satellite Network Reference Guide The information in this document has been carefully reviewed and is believed to be reliable. Nanometrics, Inc. reserves the right to make changes at any time without notice to improve the reliability and function of the product. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permis- sion of Nanometrics Inc. Nanometrics, Inc. 250 Herzberg Road Kanata, Ontario, Canada K2K 2A1 Tel (613)592-6776 Fax (613)592-5929 Email [email protected] Part number 14824R1 Release date 2004-02-25 Contents Part 1 Getting Started Chapter 1 Introduction . 1 1.1 About Libra VSAT networks . 1 1.2 About this Reference Guide . 2 1.2.1 Related documents . 3 1.2.1.1 As-shipped configuration sheets . 3 1.2.1.2 Nanometrics product manuals . 3 1.3 Network planning forms . 4 1.4 Technical support. 4 Chapter 2 Libra Communications Overview . 1 2.1 Introduction to satellite communications . 1 2.2 Introduction to Libra networks . 10 2.3 Introduction to IP communications . 25 Part 2 Planning the Network Chapter 3 Selecting Network Sites . 35 3.1 Hub sites . 35 3.1.1 Selecting hub sites . 35 3.1.2 Peer hubs . 35 3.1.3 Keeping a record of hub site information . 36 3.2 Remote sites . 36 3.2.1 Selecting remote sites. 36 3.2.2 Keeping a record of remote site information . 36 3.3 Prepare site plans . 37 3.4 Form 1 – Site List . 39 Chapter 4 Configuring Libra IP Connections . 41 4.1 Libra network IP connections . 41 4.2 Configuring your Libra network IP . 43 4.2.1 IP configuration table . 44 4.2.2 IP configuration example . 44 4.3 Form 2 – IP Configuration . 47 Chapter 5 Remote Station Data . 49 5.1 Types of remote station data . 49 5.2 Cygnus communications control . 50 5.3 Cygnus data ports . 50 i Contents 5.3.1 NMXbus ports . 50 5.3.2 Serial ports . 51 5.3.3 External SOH channels. 52 5.4 Instrument and environmental SOH. 52 5.5 Digitiser configuration. 53 5.6 Form 3 – Station Data Configuration . 55 Chapter 6 Multiplexing Network Data – TDMA . 59 6.1 Overview of TDMA . 59 6.2 TDMA in Libra networks. 60 6.2.1 Latency: Selecting the frame duration . 61 6.2.2 Data bandwidth: Assigning slot capacities . 62 6.2.2.1 Determining the baseline seismic data rate. 62 6.2.2.2 Choosing the TDMA data throughput . 62 6.2.2.3 Allocating bandwidth in smaller networks . 63 6.2.3 Epoch duration . 64 6.2.4 Slot guard time . 65 6.2.5 Lock duration . 65 6.2.6 Security keys. 65 6.3 Configuring your Libra network TDMA . 65 6.4 Form 4 – TDMA Configuration . 67 Chapter 7 Interpreting Your Satellite Lease . 69 7.1 What is a satellite lease? . 69 7.1.1 The satellite service . 69 7.1.2 Responsibilities of the satellite provider . 70 7.1.3 Responsibilities of the network operator . 70 7.1.4 Cost of the satellite services . 71 7.2 Applying the satellite lease information to your network . 71 7.2.1 Network name. 72 7.2.2 Satellite name . 72 7.2.3 Authorization number . 73 7.2.4 Transponder . 73 7.2.5 Satellite longitude . 73 7.2.6 Uplink polarization. 73 7.2.7 Satellite local oscillator . 73 7.2.8 Satellite local oscillator offset . ..
Recommended publications
  • 6. the INTELSAT 17 Satellite
    TWO COMMUNICATIONS SATELLITES READY FOR LAUNCH Arianespace will orbit two communications satellite on its fifth launch of the year: INTELSAT 17 for the international satellite operator Intelsat, and HYLAS 1 for the European operator Avanti Communications. The choice of Arianespace by leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads. Arianespace and Intelsat have built up a long-standing relationship based on mutual trust. Since 1983, Arianespace has launched 48 satellites for Intelsat. Positioned at 66 degrees East, INTELSAT 17 will deliver a wide range of communication services for Europe, the Middle East, Russia and Asia. Built by Space Systems/Loral of the United States, this powerful satellite will weigh 5,540 kg at launch. It will also enable Intelsat to expand its successful Asian video distrubution neighborhood. INTELSAT 17 will replace INTELSAT 702. HYLAS 1 is Avanti Communications’ first satellite. A new European satellite operator, Avanti Communications also chose Arianespace to orbit its HYLAS 2 satellite, scheduled for launch in the first half of 2012. HYLAS 1 was built by an industrial consortium formed by EADS Astrium and the Indian Space Research Organisation (ISRO), using a I-2K platform. Fitted with Ka-band and Ku-band transponders, the satellite will be positioned at 33.5 degrees West, and will be the first European satellite to offer high-speed broadband services across all of Europe.
    [Show full text]
  • Federal Communications Collll1lwion Record 11 FCC Red No
    DA 96-122 Federal Communications Collll1lWion Record 11 FCC Red No. 4 fore find that the public interest will be served by a grant Before the of Comsat's application for the launch of the INTELSAT Federal Communications Commission 707 satellite as conditioned. Washington, D.C. 20554 5. Accordingly, IT IS ORDERED that Comsat's applica­ tion to participate in the launch and test program of the INTELSAT 707 satellite to be positioned at 359° East Lon­ In the Matter of gitude, IS GRANTED subject to the following terms and conditions: COMSAT CORPORATION File No. CSS-94-005-LA (a) This authorization is limited to the described Application for authority program. Any change in the authorized location due to participate in the launch to a launch delay or other circumstances will be of the INTELSAT VII-A (F-7) considered upon a proper request by Comsat for authority; (b) Comsat shall furnish via the INTELSAT 707 sat­ ellite only those channels of communication for com­ mercial service which have been, or may be, ORDER AND AUTHORIZATION authorized by the Commission under Section 214 of the Communications Act of 1934, as amended; Adopted: January 26, 1996; Released: February 9, 1996 (c) Within 30 days after completion of the testing program, Comsat shall provide the Commission with By the Chief, Satellite and Radiocommunication Divi­ a summary report of its results and, upon request, sion: shall make the detailed test data available; (d) Conduct of the program authorized herein shall 1. The Commission has under consideration the above­ be without interruption of commercial satellite ser­ captioned application filed by the COMSAT Corporation vice now authorized at U.S.
    [Show full text]
  • Commercial Spacecraft Mission Model Update
    Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]
  • Name NORAD ID Int'l Code Launch Date Period [Minutes] Longitude LES 9 MARISAT 2 ESIAFI 1 (COMSTAR 4) SATCOM C5 TDRS 1 NATO 3D AR
    Name NORAD ID Int'l Code Launch date Period [minutes] Longitude LES 9 8747 1976-023B Mar 15, 1976 1436.1 105.8° W MARISAT 2 9478 1976-101A Oct 14, 1976 1475.5 10.8° E ESIAFI 1 (COMSTAR 4) 12309 1981-018A Feb 21, 1981 1436.3 75.2° E SATCOM C5 13631 1982-105A Oct 28, 1982 1436.1 104.7° W TDRS 1 13969 1983-026B Apr 4, 1983 1436 49.3° W NATO 3D 15391 1984-115A Nov 14, 1984 1516.6 34.6° E ARABSAT 1A 15560 1985-015A Feb 8, 1985 1433.9 169.9° W NAHUEL I1 (ANIK C1) 15642 1985-028B Apr 12, 1985 1444.9 18.6° E GSTAR 1 15677 1985-035A May 8, 1985 1436.1 105.3° W INTELSAT 511 15873 1985-055A Jun 30, 1985 1438.8 75.3° E GOES 7 17561 1987-022A Feb 26, 1987 1435.7 176.4° W OPTUS A3 (AUSSAT 3) 18350 1987-078A Sep 16, 1987 1455.9 109.5° W GSTAR 3 19483 1988-081A Sep 8, 1988 1436.1 104.8° W TDRS 3 19548 1988-091B Sep 29, 1988 1424.4 84.7° E ASTRA 1A 19688 1988-109B Dec 11, 1988 1464.4 168.5° E TDRS 4 19883 1989-021B Mar 13, 1989 1436.1 45.3° W INTELSAT 602 20315 1989-087A Oct 27, 1989 1436.1 177.9° E LEASAT 5 20410 1990-002B Jan 9, 1990 1436.1 100.3° E INTELSAT 603 20523 1990-021A Mar 14, 1990 1436.1 19.8° W ASIASAT 1 20558 1990-030A Apr 7, 1990 1450.9 94.4° E INSAT 1D 20643 1990-051A Jun 12, 1990 1435.9 76.9° E INTELSAT 604 20667 1990-056A Jun 23, 1990 1462.9 164.4° E COSMOS 2085 20693 1990-061A Jul 18, 1990 1436.2 76.4° E EUTELSAT 2-F1 20777 1990-079B Aug 30, 1990 1449.5 30.6° E SKYNET 4C 20776 1990-079A Aug 30, 1990 1436.1 13.6° E GALAXY 6 20873 1990-091B Oct 12, 1990 1443.3 115.5° W SBS 6 20872 1990-091A Oct 12, 1990 1454.6 27.4° W INMARSAT 2-F1 20918
    [Show full text]
  • About the Associate Administrator for Commercial Space Transportation (Ast) and the Commercial Space Transportation Advisory Committee (Comstac)
    2000 COMMERCIAL SPACE TRANSPORTATION FORECASTS Federal Aviation Administration’s Associate Administrator for Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) May 2000 ABOUT THE ASSOCIATE ADMINISTRATOR FOR COMMERCIAL SPACE TRANSPORTATION (AST) AND THE COMMERCIAL SPACE TRANSPORTATION ADVISORY COMMITTEE (COMSTAC) The Federal Aviation Administration’s senior executives from the U.S. commercial Associate Administrator for Commercial Space space transportation and satellite industries, Transportation (AST) licenses and regulates U.S. space-related state government officials, and commercial space launch activity as authorized other space professionals. by Executive Order 12465, Commercial Expendable Launch Vehicle Activities, and the The primary goals of COMSTAC are to: Commercial Space Launch Act of 1984, as amended. AST’s mission is to license and • Evaluate economic, technological and regulate commercial launch operations to ensure institutional issues relating to the U.S. public health and safety and the safety of commercial space transportation industry property, and to protect national security and foreign policy interests of the United States • Provide a forum for the discussion of issues during commercial launch operations. The involving the relationship between industry Commercial Space Launch Act of 1984 and the and government requirements 1996 National Space Policy also direct the Federal Aviation Administration to encourage, • Make recommendations to the Administrator facilitate, and promote commercial launches. on issues and approaches for Federal policies and programs regarding the industry. The Commercial Space Transportation Advisory Committee (COMSTAC) provides Additional information concerning AST and information, advice, and recommendations to the COMSTAC can be found on AST’s web site, at Administrator of the Federal Aviation http://ast.faa.gov.
    [Show full text]
  • This Version of the Database Includes Launches Through July 31, 2020
    This version of the Database includes launches through July 31, 2020. There are currently 2,787 active satellites in the database. The changes to this version of the database include: • The addition of 247 satellites • The deletion of 126 satellites • The addition of and corrections to some satellite data Additions and Deletions for UCS Satellite Database Release August 1, 2020 Deletions for August 1, 2020 Release ZA-Aerosat – 1998-067LU Nsight-1 – 1998-067MF ASTERIA – 1998-067NH INMARSAT 3-F1 – 1996-020A INMARSAT 3-F2 – 1996-053A Navstar GPS SVN 60 (USA 178) – 2004-023A RapidEye-1 – 2008-040C RapidEye-2 – 2008-040A RapidEye-3 – 2008-040D RapidEye-4 – 2008-040E RapidEye-5 – 2008-040B Dove 2 – 2013-015c Dove 3 – 2013-066P Dove 1c-10 – 2014-033P Dove 1c-7 – 2014-033S Dove 1c-1 – 2014-033T Dove 1c-2 – 2014-033V Dove 1c-4 – 2014-033X Dove 1c-11 – 2014-033Z Dove 1c-9 – 2014-033AB Dove 1c-6 – 2014-033AC Dove 1c-5 – 2014-033AE Dove 1c-8 – 2014-033AG Dove 1c-3 – 2014-033AH Dove 3m-1 – 2016-040J Dove 2p-11 – 2016-040K Dove 2p-2 – 2016-040L Dove 2p-4 – 2016-040N Dove 2p-7 – 2016-040S Dove 2p-5 – 2016-040T Dove 2p-1 – 2016-040U Dove 3p-37 – 2017-008F Dove 3p-19 – 2017-008H Dove 3p-18 – 2017-008K Dove 3p-22 – 2017-008L Dove 3p-21 – 2017-008M Dove 3p-28 – 2017-008N Dove 3p-26 – 2017-008P Dove 3p-17 – 2017-008Q Dove 3p-27 – 2017-008R Dove 3p-25 – 2017-008S Dove 3p-1 – 2017-008V Dove 3p-6 – 2017-008X Dove 3p-7 – 2017-008Y Dove 3p-5 – 2017-008Z Dove 3p-9 – 2017-008AB Dove 3p-10 – 2017-008AC Dove 3p-75 – 2017-008AH Dove 3p-73 – 2017-008AK Dove 3p-36 –
    [Show full text]
  • OFCOM SPECTRUM REVIEW (April 2012)
    OFCOM SPECTRUM REVIEW (April 2012) 1. THE IMPORTANCE OF SATELLITE ACCESS TO SPECTRUM Satellite systems and networks require hundreds of millions of Euros of investment, and years of advance planning and construction prior to deployment. Investment decisions related to development of networks are made based on the business case and require market access on reasonable terms to the countries in the footprint. Once a satellite is operational, commercial viability depends on the availability of spectrum and the applicable regulatory regimes that the satellite network will be serving. Spectrum is the essential ingredient of all wireless communications systems. As satellites are a transnational, wireless-based technology, satellite operators heavily depend upon the global spectrum allocations of the United Nations’ International Telecommunication Union (“ITU”). Satellite companies use their satellites to deliver a full range of services including among others: broadcast and other program distribution; broadband; maritime; aeronautical; government and emergency communications; telecommunications and private data networks, mobile fleet / traffic management and telemedicine. In particular, satellite has been at the forefront of digital TV & high definition television (“HDTV”) development and should also be considered as one of the best platforms for the further growth of HDTV and the development of 3-D and interactive on demand digital services in Europe. Taking advantage of the high reliability of their infrastructure, European satellite operators have also long used their networks to connect Europe and the world during the most difficult man-made and natural disasters. Furthermore, satellite is the only available means of communications able to efficiently and immediately deliver broadband to all underserved or un-served areas of Europe.
    [Show full text]
  • Changes to the Database for May 1, 2021 Release This Version of the Database Includes Launches Through April 30, 2021
    Changes to the Database for May 1, 2021 Release This version of the Database includes launches through April 30, 2021. There are currently 4,084 active satellites in the database. The changes to this version of the database include: • The addition of 836 satellites • The deletion of 124 satellites • The addition of and corrections to some satellite data Satellites Deleted from Database for May 1, 2021 Release Quetzal-1 – 1998-057RK ChubuSat 1 – 2014-070C Lacrosse/Onyx 3 (USA 133) – 1997-064A TSUBAME – 2014-070E Diwata-1 – 1998-067HT GRIFEX – 2015-003D HaloSat – 1998-067NX Tianwang 1C – 2015-051B UiTMSAT-1 – 1998-067PD Fox-1A – 2015-058D Maya-1 -- 1998-067PE ChubuSat 2 – 2016-012B Tanyusha No. 3 – 1998-067PJ ChubuSat 3 – 2016-012C Tanyusha No. 4 – 1998-067PK AIST-2D – 2016-026B Catsat-2 -- 1998-067PV ÑuSat-1 – 2016-033B Delphini – 1998-067PW ÑuSat-2 – 2016-033C Catsat-1 – 1998-067PZ Dove 2p-6 – 2016-040H IOD-1 GEMS – 1998-067QK Dove 2p-10 – 2016-040P SWIATOWID – 1998-067QM Dove 2p-12 – 2016-040R NARSSCUBE-1 – 1998-067QX Beesat-4 – 2016-040W TechEdSat-10 – 1998-067RQ Dove 3p-51 – 2017-008E Radsat-U – 1998-067RF Dove 3p-79 – 2017-008AN ABS-7 – 1999-046A Dove 3p-86 – 2017-008AP Nimiq-2 – 2002-062A Dove 3p-35 – 2017-008AT DirecTV-7S – 2004-016A Dove 3p-68 – 2017-008BH Apstar-6 – 2005-012A Dove 3p-14 – 2017-008BS Sinah-1 – 2005-043D Dove 3p-20 – 2017-008C MTSAT-2 – 2006-004A Dove 3p-77 – 2017-008CF INSAT-4CR – 2007-037A Dove 3p-47 – 2017-008CN Yubileiny – 2008-025A Dove 3p-81 – 2017-008CZ AIST-2 – 2013-015D Dove 3p-87 – 2017-008DA Yaogan-18
    [Show full text]
  • Changes to the June 19, 2006 Release of the UCS Satellite Database This Version of the Database Includes Launches Through June 15, 2006
    For the 9-1-17 release: This version of the Database includes launches through August 31, 2017. There are currently 1,738 active satellites in the database. The changes to this version of the database include: • The addition of 321satellites • The deletion of 35 satellites • The addition of and corrections to some satellite data. Satellites Removed Intelsat 701 -- 1993-066A Intelsat 702 -- 1994-034A Gonets D1-14 – 1996-009B Apstar 1A -- 1996-039A Meteosat-7 – 1997-049B Iridium-30 – 1997-051F Echostar-3 – 1997-059A SpinSat - 1998-067FL Tancredo-1 – 1998-067KT Globalstar MO26 – 1999-041A Telkom-1 – 1999-042A Hispasat-1C – 2000-007A Garuda-1 – 2000-011A Echostar-8 -- 2002-039A AMC-9 – 2003-024A Amos 2 -- 2003-059A Amazonas-1 – 2004-031A Kiku-8 -- 2006-059A Prism – 2009-002B TISat-1 -- 2010-035E MKFKI-1 – 2012-039E Cubebug-1 – 2013-018D Phonesat 2.4 – 2013-064B Firefly – 2013-064R NPS-SCAT – 2013-064K PUCP-SAT -- 2013-066AC Humsat-D – 2013-066T Wren -- 2013-066V Firebird-A – 2013-072B Firebird-B – 2013-072C Popsat-HIP – 2014-033U QB50P2 -- 2014-033Y Tianwang-1B -- 2015-051C Horyu-4 -- 2016-012D Samsat-218D – 2016-026C Satellites Added: Launched from Ground Station Lemur-2F14 – 2016-062D Lemur-2F15 – 2016-062C Lemur-2F16 – 2016-062E Lemur-2F17 – 2016-062F TJS-2 – 2017-001A YY-S1 – 2017-002A Jilin 1-3 – 2017-002B Kaidun-1 – 2017-002C Iridium Next SV 106 – 2017-003A Iridium Next SV 103 – 2017-003B Iridium Next SV 109 – 2017-003C Iridium Next SV 102 – 2017-003D Iridium Next SV 105 – 2017-003E Iridium Next SV 104 – 2017-003F Iridium Next SV 114
    [Show full text]
  • INTELSAT S.A. (Exact Name of Registrant As Specified in Its Charter)
    Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) ☒ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2010 OR ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission file number 000-50262 INTELSAT S.A. (Exact name of registrant as specified in its charter) Luxembourg 98-0346003 (State or Other Jurisdiction of (I.R.S. Employer Incorporation or Organization) Identification No.) 4, rue Albert Borschette Luxembourg L-1246 (Address of Principal Executive Offices) (Zip Code) +352 27-84-1600 (Registrant’s Telephone Number, Including Area Code) Securities registered pursuant to Section 12(b) of the Act: None Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ☐ No ☒ Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes ☒ No ☐ Indicate by check mark whether the registrant: (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes ☐ No ☒ Indicate by check mark whether the registrant has submitted electronically and posted on its corporate Web site, if any, every Interactive Data File required to be submitted and posted pursuant to Rule 405 of Regulation S-T (§232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit and post such files).
    [Show full text]
  • Commercial Communications Satellites Geosynchronous Orbit
    Commercial Communications Satellites Geosynchronous Orbit 95.0°E 93.5°E 92.0°E 91.5°E Cakrawarta 1, Telkom 1, NSS-11, SES-7 100.5°E 98.5°E 105.0°E 105.5°E 108.0°E 109.0°E DRIFTING: 110.5°E110.0°E 88.0°E 87.5°E 85.0°E 113.0°E 83.0°E 115.5°E BSAT-2C, -3A, -3B -3C; N-SAT-110 80.0°E 78.5°E 76.5°E Eutelsat 4A 116.0°E 75.0°E 74.0°E 72.0°E 118.0°E 70.5°E 119.5°E Horizons-2 68.5°E 66.0°E 120.0°E 64.5°E 64.0°E LMI AP 2 (Gorizont 30) 122.0°E Sinosat-1/Intelsat APR-2 (I) 62.0°E 123.0°E 60.0°E 124.0°E MEASAT 3, 3A 57.0°E 56.0°E Thuraya 3 (I) Palapa D, Koreasat 5 Inmarsat II F-4 (I) Insat 3A, 4B 55.5°E Asiasat 3S, 7 Chinasat-9 55.0°E [Comstar D4] 128.0°E [Koreasat 2] 53.0°E Asiastar 1 Asiasat 5 52.5°E ABS-7, Koreasat 6 51.5°E 132.0°E NSS-6 51.0°E Chinasat 6B 50.0°E 134.0°E Amos 5i 48.0°E ST-1, -2 Chinastar-1 47.5°E Intelsat-15/JCSat-85;Insat 4A Esiafi 1 (I) 136.0°E Thaicom 5 Apstar 2R, 7 ABS-1, -1A 46.0°E ThaicomTelkom 4 2 Insat 3C,Intelsat 4CR 706, 709, 22; Leasat F-5 (I) Astra 1F 138.0°E EutelsatIntelsat-7, 70A -10 [BONUM] 45.0°E 142.0°E [Asiasat 2] Intelsat-17Inmarsat III F-1 43.5°E Asiasat 4 IntelsatIntelsat 906 902 [Express AM-22] 42.0°E 143.5°E JCSat 3A Garuda 1 Intelsat 904 (I) 39.0°E JCSat 4A NSS-12MOST-1 °E 144.0°E JCSat 5A, Vinasat 1 GalaxyInsat 11 3E, 4G; Intelsat-26 36.0 °E SESAT 2 34.5 °E , 12 (IOS) YahsatApstar 1A 1A Sirius 3 [Measat 1] 33.5 150.0°E Galaxy 27 33.0°E Apstar 5/Telstar 18 GalaxyEutelsat 26, 48A, B 31.5°E 150.5°E Apstar 6 Intelsat 702 N-Star C Africasat 1 31.0°E 152.0°E Superbird C2, MBSAT 1 90˚E Intelsat-12, 30.5°E InmarsatApstar
    [Show full text]