The Environmental History of Silver Production, and Its Impact on the United Nations Minamata Convention on Mercury

Total Page:16

File Type:pdf, Size:1020Kb

The Environmental History of Silver Production, and Its Impact on the United Nations Minamata Convention on Mercury The environmental history of silver production, and its impact on the United Nations Minamata Convention on mercury. Saul Guerrero, Invited Professor, Universidad Metropolitana, Caracas, Venezuela ([email protected]) Introduction The tragic consequence of the presence of mercury compounds in the waters of Minamata Bay (Japan) on the health of its local population in mid-20c, focused the world’s attention on the global dangers to humans of anthropogenic emissions of mercury and its compounds to the environment. By 2018, 91 countries had ratified the Minamata Convention (2013) sponsored by the United Nations, through its Environmental Program (UNEP). This is a multilateral agreement that seeks, among other aims, to control ‘the anthropogenic releases of mercury throughout its lifecycle’.1 An important part of the work undertaken by environmental scientists in support of this convention, has been the modelling of mercury emissions to the environment, as the sum of natural processes and anthropogenic emissions over time. Mercury is known to persist in the atmosphere for many months, thus contributing to its global dispersion. Historic anthropogenic mercury can be re-issued to the environment over multiple cycles spanning centuries, before it is taken out of circulation within deep ocean sediments or land sinks. The problem lies in that ‘the accumulated burden of legacy anthropogenic Hg [mercury] means that future deposition will increase even if primary anthropogenic emissions are held constant. Aggressive global Hg emission reductions will be necessary just to maintain oceanic Hg concentrations at present levels.’2 It is widely recognized that the main source of this legacy mercury up to the end of the 19c has been the historic refining of silver and gold, thus this topic provides a fertile ground for collaboration between historians and environmental scientists. Current scenarios Several studies have been published proposing ranges for historical anthropogenic mercury emissions from silver refining. The majority are based on two assumptions: 1) 60 to 65% was due to direct losses of volatile mercury to the air, the remainder as losses of liquid mercury to the ground or waterways 2) a conflation of historic silver refining with modern artisanal gold production practice, so that ratios of mercury ‘losses’ to refined metal are deemed to be the same for gold and silver.3 Some later models have not made explicit the distinction between historic production of silver using mercury, and the fraction that has been extracted by smelting.4 Others 1 see http://www.mercuryconvention.org. 2 Helen M Amos et al., "Legacy Impacts of All‐time Anthropogenic Emissions on the Global Mercury Cycle," Global Biogeochemical Cycles 27, no. 2 (2013): 410. Legacy mercury is defined as ‘the re-emitted component of anthropogenic Hg’, Helen M. Amos et al., "Observational and Modeling Constraints on Global Anthropogenic Enrichment of Mercury," Environmental Science & Technology 49, no. 7 (2015): 4036. 3 J. Nriagu, "Legacy of Mercury Pollution," Nature 363 (1993): 589; "Mercury Pollution from the Past Mining of Gold and Silver in the Americas," The Science of the Total Environment 149 (1994): 167-189 . 4 S. Strode, L. Jaeglé, and N.E. Selin, "Impact of Mercury Emissions from Historic Gold and Silver Mining: Global Modeling," Atmospheric Environment 43, no. 12 (2009): 2012-2017; David G Streets et al., "All-time releases of 2 have sidestepped the issue of exactly how much silver was produced using mercury, and based their projections on the estimated amount of mercury used to refine silver.5 In the following sections I will argue that the historical (and chemical) scenario was more complex than current models allow for, and though I will present working figures at an order of magnitude level, to highlight the need for a major review of current models, the more important aim at this stage is to identify those areas where further historical research is required. It will be of great importance for UNEP’s policy decisions on the control of future emissions of anthropogenic mercury, to have a firm knowledge of the historical record on all the processes related to mercury and its use in silver refining.6 Methodology The projections I present of mercury issued to the environment as a result of historic silver production take into account that: 1) only total consumption of mercury, or direct losses to the air of volatile mercury during the heating of the amalgam, the casting of silver bars, or the processing of cinnabar (mercury sulphide) to produce the required mercury, are reported in historical sources. The fraction of liquid mercury lost, or the amount of mercury consumed as calomel (mercurous chloride), have to be estimated, based on historical and chemical evidence, since they were never measured during actual operations 2) results are location and period specific, since recipes, processes and equipment went through major changes between the 16c and 19c 3) historical silver refining with mercury and modern artisanal gold refining practice are two quite different historical and technical processes, and there is no theoretical or empirical basis to justify extrapolating values between them 4) the fraction of silver produced by smelting has to be subtracted from total silver production data. Direct air emissions of volatile mercury Operational data measured in the 19c in Mexico, of direct losses of mercury to the air during the recycling of mercury from the amalgam, ranged from 0.06 to 0.6%.7 In the U.S.A. ‘when the mercury to the atmosphere from human activities," Environmental science & technology 45, no. 24 (2011): 104585- 10491; David G Streets et al., "Total mercury released to the environment by human activities," Environmental Science & Technology 51, no. 11 (2017): 5969-5977. 5 Nicola Pirrone et al., "Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources," Atmospheric Chemistry and Physics 10, no. 13 (2010): 5951-5964; Julio A. Camargo, "Contribution of Spanish– American Silver Mines (1570–1820) to the Present High Mercury Concentrations in the Global Environment : A Review," Chemosphere 48 (2002): 51-57. 6 At present there is a debate within the field of environmental science whether the high level of legacy mercury predicted by some models is not consistent with global field measurements of mercury. See for example C.H. Lamborg et al., “Modern and Historic Atmospheric Mercury Fluxes in Both Hemispheres: Global and Regional Mercury Cycling Implications,” Global Biogeochemical Cycles 16, no. 4, 1104; Colin A. Cooke et al., "Over Three Millennia of Mercury Pollution in the Peruvian Andes," Proceedings of the National Academy of Sciences 106, no. 22 (2009): 8830-8834; Daniel R. Engstrom et al., "Atmospheric Hg Emissions from Preindustrial Gold and Silver Extraction in the Americas: A Reevaluation from Lake-Sediment Archives," Environmental Science & Technology 48, no. 12 (2014): 6533-6543; Yanxu Zhang et al., "Six Centuries of Changing Oceanic Mercury," Global Biogeochemical Cycles 28, no. 11 (2014):1251-1261. 7 Saint Clair Duport, De la production des métaux précieux au Mexique, considérée dans ses rapports avec la géologie, la métallurgie et l'économie politique (Paris: Firmin Didot Frères, 1843), 117 ; M.P. Laur, "De la metallurgie de 3 retorting is properly done the loss of quicksilver by distillation is merely nominal. At the California mill about one half a pound of quicksilver is lost per 1,000 pounds of amalgam retorted [less than 0.1% of the mercury in the amalgam]’.8 The heating stage of the amalgam never removed all the mercury, for fear of compromising the long-term physical integrity of the iron vessels employed, so those percentages had to include the amount of residual mercury left with the silver. Other data indicate a 1 to 2% of weight loss (with respect to silver) during the final casting of silver bars, that was attributed to loss of residual mercury.9 I will apply the highest scenario of the historical data, of an average loss of 5% of volatile mercury, with respect to the weight of silver refined. The chemistry of silver refining with mercury ‘In the patio process of amalgamation a very large amount of quicksilver is converted into calomel and lost’.10 I have argued at length elsewhere on the importance of recognizing the formation of calomel as a major by-product of the chemical reaction between mercury and silver chloride, the last of several chemical stages in the refining process that allowed metallic silver to be extracted from its chemical compounds (halides, sulphides) present in an ore. I have proposed a simple mathematical model that can explain the narrow range of historical values for the ratio of mercury consumed/silver refined in Hispanic America, on the basis of 85% of mercury consumed (not ‘lost’) by conversion to calomel, and 15% lost by physical pathways (liquid mercury to the soil, or to waterways, and direct volatile losses to the air), for ores with little native silver.11 Calomel is an insoluble solid, and would have been buried within millions of tons of fine mineral silt, either in landfills close to the refining units, or washed away in waterways close to refining centres. In the patio process it would have functioned as a chemical sink for anthropogenic mercury emissions from silver refining. The pan process utilized in the latter part of the 19c in the U.S.A. introduced a major change in the refining process. It incorporated a very large ratio of iron to mercury consumed (up to 15), compared to ratios of zero to less than unity in the patio process or its precursor in Peru. In addition, the ore was subject to significant attrition in an iron vessel (the pan) and steam, or indirect heat, was applied to the slurry together with the addition of mercury.12 Iron was known since the 16c to l'argent au Mexique," Annales des Mines, 6th series, 20 (1871): 163, 176-177 ; Thomas Egleston, The Metallurgy of Silver, Gold, and Mercury in the United States (London; New York: J.
Recommended publications
  • Latin American Per Capita GDP in Colonial Times
    Growth under Extractive Institutions? Latin American Per Capita GDP in Colonial Times LETICIA ARROYO ABAD AND JAN LUITEN VAN ZANDEN This article presents new estimations of per capita GDP in colonial times for the WZRSLOODUVRIWKH6SDQLVKHPSLUH0H[LFRDQG3HUX:H¿QGG\QDPLFHFRQRPLHV DV HYLGHQFHG E\ LQFUHDVLQJ UHDO ZDJHV XUEDQL]DWLRQ DQG VLOYHU PLQLQJ 7KHLU JURZWK WUDMHFWRULHV DUH VXFK WKDW ERWK UHJLRQV UHGXFHG WKH JDSZLWK UHVSHFW WR 6SDLQ 0H[LFR HYHQ DFKLHYHG SDULW\ DW WLPHV :KLOH H[SHULHQFLQJ VZLQJV LQ JURZWKWKHQRWDEOHWXUQLQJSRLQWLVLQVDVERWWOHQHFNVLQSURGXFWLRQDQG ODWHUWKHLQGHSHQGHQFHZDUVUHGXFHGHFRQRPLFDFWLYLW\2XUUHVXOWVTXHVWLRQWKH notion that colonial institutions impoverished Latin America. Q WKH WDOHV RI XQGHUGHYHORSPHQW /DWLQ $PHULFD LV D IUHTXHQW FKDU- IDFWHU6FRUHVRIDUWLFOHVDQGERRNVDUHGHYRWHGWRWKHSUREOHPRIWKH /DWLQ$PHULFDQHFRQRPLFODJ*LYHQWKHULFKHQGRZPHQWVZK\GLGWKH UHJLRQIDLOWRFRQYHUJHWRWKHVWDQGDUGVRIOLYLQJRIWKHGHYHORSHGZRUOG" &RPSDULVRQVWRDYDULHW\RIGHYHORSHGDQGGHYHORSLQJFRXQWULHVDERXQG ZLWKWKHREOLJDWRU\FRQFOXVLRQRIWKHUHJLRQ¶VVTXDQGHUHGRSSRUWXQLWLHV WR MXPS RQ WKH JURZWK ZDJRQ ([SODLQLQJ WKH HFRQRPLF JDS EHWZHHQ /DWLQ$PHULFDDQGWKHGHYHORSHGZRUOGKDVPRWLYDWHGDODUJHVKDUHRIWKH UHFHQWVFKRODUVKLSRQWKHHFRQRPLFKLVWRU\RIWKHUHJLRQ VHH&RDWVZRUWK DQG6XPPHUKLOO +LVWRULFDOZRUNRQ/DWLQ$PHULFDKDVRIWHQORRNHGDWWKH³SDWKGHSHQ- GHQFH´ZKHUHWKHRULJLQRIWKHGHYHORSPHQWSDWKLVWUDFHGEDFNWRWKH FRORQLDOSHULRG (QJHUPDQDQG6RNRORII$FHPRJOX-RKQVRQDQG 5RELQVRQ $V -RVp 0DUWt QRWHG RQFH 1RUWK $PHULFD ZDV ERUQ ZLWKDSORXJKLQLWVKDQG/DWLQ$PHULFDZLWKDKXQWLQJGRJ &HQWURGH The Journal
    [Show full text]
  • The Economics of Mining Evolved More Favorably in Mexico Than Peru
    Created by Richard L. Garner 3/9/2007 1 MINING TRENDS IN THE NEW WORLD 1500-1810 "God or Gold?" That was the discussion question on an examination that I took many years ago when I started my studies in Latin American history. I do not recall how I answered the question. But the phrase has stuck in my mind ever since. And it has worked its way into much of the history written about the conquest and post-conquest periods, especially the Spanish conquests. From the initial conquests in the Caribbean and certainly after the conquests of Mexico and Peru the search for minerals became more intensive even as the Spanish Crown and its critics argued over religious goals. In the middle of the sixteenth century after major silver discoveries in Mexico and Peru the value of the output of the colonial mines jumped significantly from a few million pesos annually (mainly from gold) to several tens of millions. Perhaps “Gold” (mineral output) had not yet trumped “God” (religious conversion) on every level and in every region, but these discoveries altered the economic and financial equation: mining while not the largest sector in terms of value or labor would become the vehicle for acquiring and consolidating wealth. Until the late seventeenth century Spanish America was the New World’s principal miner; but then the discovery of gold in Brazil accorded it the ranking gold producer in the New World while Spanish American remained the ranking silver producer. The rise of mining altered fundamentally the course of history in the New World for the natives, the settlers, and the rulers and had no less of an effect on the rest of the world.
    [Show full text]
  • Division of Mines and Mining
    STATE OF WASHINGTON ARTHUR B. LANGLIE, GOVERNOR Department of Conservation and Development JOHN BROOKE FINK, Director THIRD BIENNIAL REPORT of the DIVISION OF MINES AND MINING For the Period Commencing January 1, 1939 and Ending January 1, 1941 By THOMAS B. HILL, SUPERVISOR J . w. MELROSE, GEOLOGIST OLYMPIA STATE PRI NTINC PLANT DIVISION OF MINES AND MINING Hon. John Brooke Fink, Director, Department of Conservation and Development, Olympia, Washington. Sir: I have the honor to submit herewith the third biennial report of the Division of Mines and Mining, covering the period from January l, 1939, to January 1, 1941. Respectfully, THOMAS B. HILL, Supervisor. DIVISION OF MINES AND MINING THOMAS B. HILL Supervisor SUMMARY OF MINERAL INFORMATION The present widespread interest in the mineral resources of Washington had its beginning in 1933 when the Director of the Department of Conserva­ tion and Devlopment devoted a substantial part of an allocation of $80,000 from Washington Emergency Relief Administration to mineral investigations. Two years later, the Division of Mines and Mining was created, and has continued the investigations, the work of compiling information and promoting the development of the mineral resources. Extensive information had been developed on the mineral resources of the State in the previous twenty-five years, largely through the Washington Geological Survey and the Division of Geology. This information had been published in some 50 or more bulletins and 1·eports, about half of which are now out of print. The information, while extensive, was scattered and in many instances fragmentary. The result of the work begun by the Department in 1933, and continued by this Division since 1935, is that now information is available on all the known mineral occurrences of the State.
    [Show full text]
  • The Engineering and Mining Journal 1908-01-25
    The Engineering and Mining Journal VOL. LXXXV. NEW YORK, JANUARY 25, 1908. NO. 4. Mining Practice at Kalgoorlie, West Australia The Telluride Ores, Resembliag Those of Cripple Creek, Occur in Lenses and Are Extracted by Methods Insuring Perfect Ventilation BY GERARD W. WILLIAMS* The Kalgoorlie or E^st Coolgardie pies proved equally efficacious. Today The mine is developed hundreds of feet goldfield is situated about 390 miles by the idle hoisting frames that dot the hori- deeper than the other mines, the shaft rail northeast of Ereemantle, th*e port of zon for miles around Coolgardie and Kal- being down to nearly 2100 ft., and good Perth, the capital of West Australia. The goorlie are but memorials of the “roaring ore has been opened up on the lowest field was discovered in 1893 P- Hannan days,” tombstones of buried English mil- levels. The Horseshoe, Ivanhoe and Kal- and party who, starting from Bayley's lions. gurlie have also received fair treatmeht Find, now' Coolgardie, first located the But of all wildcats none seemed more as is shown by the position they occupy claims that attracted attention to the flagrant than those mines which lay today. small area which now produces about toward the Lake till, almost by accident, As the result of experience and experi- 900,000 oz. gold per annum and which it was discovered that these claims con- ment the mines evolved economic and SURFACE PLANT, KALGURLIE GOLD MINES, LTD. since 1893 has produced a total of 9,000,000 tained unsuspected formations containing metallurgically successful methods for the oz.
    [Show full text]
  • The Mexican Mining Bubble That Burst1
    CHAPTER 34 The Mexican Mining Bubble that Burst1 Ivani Vassoler Similar to the 17th century “Tulipmania” in Holland when tulip bulbs became a top commodity causing a speculative fever that, in the end, ruined thousands of Dutch investors,2 Mexico, in the first decades of the 19th cen- tury, became a hot spot for Europeans eager to reap huge profits from Mexi- can silver mines. Yet the mine-investing rush quickly proved to be much less profitable than European investors assumed, and foreign companies with- drew from Mexico, thus souring the newly independent country’s relation- ship with international investors. While the episode undoubtedly created a bumpy start for an emerging nation desperately in need of capital to finance its development, much less clear, however, is why it happened. As the expec- tations of high investment returns went unfulfilled, financiers in Europe alleged the one mostly to blame was Alexander von Humboldt (Kellner 1963, 110) for his assessment of the Mexican mines’ potential, described in details in his Political Essay on the Kingdom of New Spain (1811). The accusations therefore raise questions as to what really prompted the cash. Did Humboldt exaggerate the quality and abundance of minerals in Mexico and their poten- tial for huge profits, or were his writings misinterpreted, and possibly dis- torted, by financial experts? Was the crash, in the end, just the product of investors’ greed? 1. During colonial times Mexico, was for the Spanish Crown, simply New Spain. In this article New Spain and Mexico will be employed interchangeably for the sake and clarity of my arguments.
    [Show full text]
  • A History of Tailings1
    A HISTORY OF MINERAL CONCENTRATION: A HISTORY OF TAILINGS1 by Timothy c. Richmond2 Abstract: The extraction of mineral values from the earth for beneficial use has been a human activity- since long before recorded history. Methodologies were little changed until the late 19th century. The nearly simultaneous developments of a method to produce steel of a uniform carbon content and the means to generate electrical power gave man the ability to process huge volumes of ores of ever decreasing purity. The tailings or waste products of mineral processing were traditionally discharged into adjacent streams, lakes, the sea or in piles on dry land. Their confinement apparently began in the early 20th century as a means for possible future mineral recovery, for the recycling of water in arid regions and/or in response to growing concerns for water pollution control. Additional Key Words: Mineral Beneficiation " ... for since Nature usually creates metals in an impure state, mixed with earth, stones, and solidified juices, it is necessary to separate most of these impurities from the ores as far as can be, and therefore I will now describe the methods by which the ores are sorted, broken with hammers, burnt, crushed with stamps, ground into powder, sifted, washed ..•. " Agricola, 1550 Introduction identifying mining wastes. It is frequently used mistakenly The term "tailings" is to identify all mineral wastes often misapplied when including the piles of waste rock located at the mouth of 1Presented at the 1.991. National mine shafts and adi ts, over- American. Society for Surface burden materials removed in Mining and Reclamation Meeting surface mining, wastes from in Durango, co, May 1.4-17, 1.991 concentrating activities and sometimes the wastes from 2Timothy c.
    [Show full text]
  • HISTORY of METALLURGY 2Nd Edition
    A HISTORY OF METALLURGY 2nd Edition A HISTORY OF METALLURGY Second Edition R. F. Tylecote MANEY FOR THE INSTITUTE OF MATERIALS Book B0789 First published in paperback in 2002 by Maney Publishing 1 Carlton House Terrace London SW1Y 5DB for the Institute of Materials First published in 1976 Reprinted in 1979 2nd edn published 1992 © The Institute of Materials 1992 All rights reserved ISBN 1-902653-79-3 Printed and bound in the UK by Antony Rowe Ltd v Contents Preface to the Second Edition vii Foreword viii Acknowledgements ix Introduction xi 1 Metals and ores in the Neolithic period 1 2 The technique and development of early copper smelting 7 3 The Early Bronze Age 18 4 The Full Bronze Age 35 5 The Early Iron Age 47 6 The Roman Iron Age 62 7 The Migration and medieval period 75 8 Post-medieval metallurgy 95 9 The Industrial Revolution; AD 1720-1850 122 10 More recent times; AD 1850-1950 164 11 The contributions of the scientists 177 Appendixes: 188 Technical Glossary 188 Note on units of weight, stress, and hardness 190 Table of elements 190 Approximate date of start of metal ages 191 Chinese chronology 191 Journals consulted and abbreviations 191 Principal works consulted 193 Maps 1-6 194-198 Subject and name index 199 vii Preface to the Second Edition The first edition was published in 1976 and an enormous increase in the general interest in the subject of archeometallurgy has taken place since then. Much of this relates to the early phases and has been discussed in Proceedings of International Conferences.
    [Show full text]
  • Toolkit for Identification and Quantification of Mercury Releases
    UNITED NATIONS ENVIRONMENT PROGRAMME CHEMICALS Toolkit for identification and quantification of mercury releases PILOT DRAFT November 2005 IOMC INTER-ORGANIZATION PROGRAMME FOR THE SOUND MANAGEMENT OF CHEMICALS A cooperative agreement among UNEP, ILO, FAO, WHO, UNIDO, UNITAR and OECD UNITED NATIONS ENVIRONMENT PROGRAMME CHEMICALS Toolkit for identification and quantification of mercury releases PILOT DRAFT November 2005 Issued by UNEP Chemicals Geneva, Switzerland This pilot draft “Toolkit for identification and quantification of mercury releases”represents the first version of this publication, intended to assist countries to establish release inventories for mercury at a national or regional level. It will be further developed and additional versions published, as appropri- ate. Both this and future versions of this Toolkit will be available on the UNEP Chemicals mercury web page at http://www.chem.unep.ch/mercury/. Disclaimer: This publication is intended to serve as a guide. The information contained in this report was taken from the published scientific literature, from government reports as well as from the Internet and through per- sonal communication. While the information provided is believed to be accurate, UNEP disclaims any responsibility for possible inaccuracies or omissions and consequences that may flow from them. Nei- ther UNEP nor any individual involved in the preparation of this publication shall be liable for any in- jury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. The designation employed and the presentation of material in this publication do not imply any expres- sion of any opinion whatsoever on the part of the United Nations or UNEP concerning the legal status of any country, territory, city or area or any of its authorities, or concerning any definition of frontiers or boundaries.
    [Show full text]
  • A Century of Silver Mining Since 1863 Has Made Idaho Into the Nation's Leading Silver State. in the Hundred Years from 1864 Thro
    IDAHO STATE HISTORICAL SOCIETY REFERENCE SERIES SILVER MINING IN IDAHO Number 160 December 1964 A century of silver mining since 1863 has made Idaho into the nation's leading silver state. In the hundred years from 1864 through 1964, a total production of about 786 million ounces has been attained. Figured at varying prices realized over the years as the metal was recovered and sold, Idaho's silver production amounted to a total value of 613 million dollars. At the 1964 price level--which practically equals the $1.29 per ounce mint price--Idaho's silver is valued at about 1 billion, fifteen million dollars. Approximately 686 million ounces in production totals (over 885 million at 1964 prices) of this came from the Coeur d'Alene district, which has produced more than three times as much silver as has the celebrated Comstock in Nevada. four of the nation's largest silver mines are now in the Coeur d'Alene area, which in total production has surpassed all other silver regions in the United States. Lode mines which assayed high in silver were discovered March 7, 1863, near Rocky Bar, and several months later near Silver City. These early assays ran high in gold also, and the Rocky Bar properties proved to be primarily gold. Those near Silver City, however, turned out to be mainly silver, as did the mines discovered June 6, 1864, at Banner. Still another early mining camp with significant silver values was Atlanta, where gold placers found in the fall of 1864 were traces in part to the great Atlanta lode which showed promise for silver as well as for gold.
    [Show full text]
  • The Candelaria Silver District, Nevada
    THE CANDELARIA SILVER DISTRICT, NEVADA. By ADOLPH KNOPF. OUTLINE OF REPORT. Candelaria, an old silver-mining camp in western Nevada, has produced $20,000,000, mainly during the seventies and eighties of the last centjiry. The ore worked in those early days averaged $40, $50, or more a ton, but the bonanza ore has long been exhausted, and the attempt now being made to revive the camp is based on the belief that there is left a considerable amount of ore of moderate grade ore carrying 10 to 15 ounces of silver to the ton from which a profit may be won by applying modern methods of mining and metallurgy. The rocks of the district consist of a steeply dipping series of cherts, argillites, and felsites, all very probably of Ordovician age. These rocks have been intruded by peridotite or allied rock (now completely altered to serpentine) and quartz monzonite porphyry at Candelaria itself, and large intrusions of granite appear a few miles from the camp. Resting unconformably on this group of older rocks and showing by its complete lack of any alteration that it is later than the mineralization is a series of Tertiary volcanic rocks, mainly rhyolite lavas and tuffs. Later than both these groups are the series of horizontal basalt flows that form the prominent cappings of the district. These flows were sub­ sequently dislocated by normal faulting, and by this faulting the present relief of the district was determined. The silver ores are highly oxidized, forming a friable aggregate deeply stained by oxides of manganese and iron.
    [Show full text]
  • Pervasive Arctic Lead Pollution Suggests Substantial Growth in Medieval Silver Production Modulated by Plague, Climate, and Conflict
    Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate, and conflict Joseph R. McConnella,1, Nathan J. Chellmana, Andrew I. Wilsonb,c, Andreas Stohld, Monica M. Arienzoa, Sabine Eckhardtd, Diedrich Fritzschee, Sepp Kipfstuhlf, Thomas Opele, Philip F. Placeg, and Jørgen Peder Steffensenh aDivision of Hydrologic Sciences, Desert Research Institute, Reno, NV 89512; bFaculty of Classics, University of Oxford, Oxford OX1 3LU, United Kingdom; cInstitute of Archaeology, University of Oxford, Oxford OX1 2PG, United Kingdom; dDepartment of Atmospheric and Climate Research, Norwegian Institute for Air Research, N-2027 Kjeller, Norway; ePolar Terrestrial Environmental Systems, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, 14473 Potsdam, Germany; fGlaciology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, 27570 Bremerhaven, Germany; gEarth and Environmental Sciences, University of Rochester, Rochester, NY 14627; and hCentre for Ice and Climate, University of Copenhagen, DK-1017 Copenhagen, Denmark Edited by Eric W. Wolff, University of Cambridge, Cambridge, United Kingdom, and accepted by Editorial Board Member A. R. Ravishankara June 13, 2019 (received for review March 15, 2019) Lead pollution in Arctic ice reflects large-scale historical changes in at the apogee of the Roman Empire indicated substantial economic midlatitude industrial activities such as ancient lead/silver pro- growth during the latter period. Particularly striking were pro- duction and recent fossil fuel burning. Here we used measure- nounced and lasting declines during the second-century Antonine ments in a broad array of 13 accurately dated ice cores from Plague and third-century Plague of Cyprian, suggesting low societal Greenland and Severnaya Zemlya to document spatial and tem- resilience to pestilence.
    [Show full text]
  • Mining & Milling
    Mining & Milling The Story of Park City 8TH GRADE SCIENCE CURRICULUM © Park City Historical Society & Museum All Rights Reserved These materials and the photographs are copyrighted by the Park City Historical Society & Museum. Permission is granted to make photocopies and transparencies of the handouts as directed in the lesson plans. Please contact the Park City Historical Society & Museum for permission to use materials for any other purpose. This program was developed by Johanna Fassbender, Curator of Education With special thanks to Richard Pick Keith J. Droste Thanks also to Courtney Cochley Josephine Janger David Hedderly-Smith James L. Hewitson Tom Barber Sydney Reed Park City Rotary Çlub Summit County Recreation, Arts and Parks Program The Underdog Foundation Dear Teachers, We hope that you will enjoy the 8th grade science curriculum and use it with your students to teach major physical and chemical con- cepts. Each lesson is keyed to the Utah Science Core Curriculum to help you deliver science instructions. Our curriculum includes history sections to provide the students with the appropriate background knowledge and get them excited about their hometown of Park City which was the unique setting for the science of mining and mineralo- gy. This goes along with our belief in an interdisciplinary approach which provides students with a more holistic knowledge and will empower them in future research projects. Almost all of the lesson plans allow for adjustments and provide you with different options, depending on the progress of your class. You can teach the entire curriculum within three weeks, or you can extend it to six weeks by slowing down the pace and reducing the workload.
    [Show full text]