Deepdive Into Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Deepdive Into Mathematics ԵՐԵՎԱՆԻ ՊԵՏԱԿԱՆ ՀԱՄԱԼՍԱՐԱՆ ԳՐԻԳՈՐՅԱՆ Ա. ԴԱՐԲԻՆՅԱՆ Ա. ՍՏԵՓԱՆՅԱՆ Ն. ՄԱԹԵՄԱՏԻԿԱՅԻ ԱՇԽԱՐՀՈՒՄ Դասագիրք Մաթեմատիկայի և մեխանիկայի, Ինֆորմատիկայի և կիրառական մաթեմատիկայի ֆակուլտետների ուսանողների համար ԵՐԵՎԱՆ ԵՊՀ ՀՐԱՏԱՐԱԿՉՈՒԹՅՈՒՆ 2019 YEREVAN STATE UNIVERSITY GRIGORIAN A. DARBINYAN A. STEPANYAN N. DEEPDIVE INTO MATHEMATICS Textbook for the students of the Faculty of Mathematics and Mechanics, Informatics and Applied Mathematics YEREVAN YSU PRESS 2019 ՀՏԴ 51(075.8) ԳՄԴ 22.1ց73 Գ 888 ՀՀ ԿԳ նախարարության կողմից հաստատվել է որպես բուհական դասագիրք: Հրատարակության է երաշխավորել ԵՊՀ եվրոպական լեզուների և հաղորդակցության ֆակուլտետի գիտական խորհուրդը: Դասագիրքը կազմել են՝ Գրիգորյան Ա. – Lesson 2, 8, 14, 20, 21, Miscellaneous, Proper Names, Դարբինյան Ա. – Lesson 1, 3, 4, 5, 11, 12, 18, 22, Proper Names, Ստեփանյան Ն. – Lesson 6, 7, 9, 10, 13, 15, 16, 17, 19, Proper Names, Guide to Mathematical Notation. Գրիգորյան Ա., Դարբինյան Ա., Ստեփանյան Ն. Գ 888 Մաթեմատիկայի աշխարհում: Դասագիրք / Գրիգորյան Ա., Դարբինյան Ա., Ստեփանյան Ն.: -Եր., ԵՊՀ հրատ., 2019, 328 էջ: Դասագիրքը նախատեսված է բուհերի Մաթեմատիկայի և մեխանի- կայի, Ինֆորմատիկայի և կիրառական մաթեմատիկայի ֆակուլտետների բակալավրիատի ուսանողների, ինչպես նաև ճշգրիտ գիտություններով զբաղվող մասնագետների համար: ՀՏԴ 51(075.8) ԳՄԴ 22.1ց73 ISBN 978-5-8084-2376-3 ԵՊՀ հրատ., 2019 Գրիգորյան Ա., Դարբինյան Ա., Ստեփանյան Ն., 2019 4 ԱՌԱՋԱԲԱՆ “Deepdive into Mathematics” անգլերեն լեզվի սույն դասա- գիրքը բաղկացած է 22 դասից: Յուրաքանչյուր դաս սկսվում է բնաբանով, որը նպատակաուղղված է տվյալ նյութի նկատմամբ հետաքրքրություն առաջացնելուն: Դասագրքի նպատակն է ու- սուցանել մասնագիտական բառապաշար, ամրապնդել մի շարք կարևոր քերականական դրույթներ, զարգացնել ուսանողների բանավոր խոսքը մասնագիտության բնագավառում, օժանդակել գիտական զեկույցներ, հոդվածներ գրելուն և հետազոտություն- ներ կատարելուն: Դասում ներկայացված հիմնական նյութն ընտրված է բարձրագույն մաթեմատիկայի տարբեր բնագավառներից: Կան նաև տեքստեր մաթեմատիկոս-գիտնականների կյանքի և մաս- նագիտական գործունեության վերաբերյալ: Տեքստի բովանդակությունն ընկալելու և ուսանողի բառա- պաշարը հարստացնելու համար յուրաքանչյուր դասի տեքստին հաջորդում է մասնագիտական բառապաշարից բառացանկ, որ- տեղ տրվում է բառի հնչյունական տառադարձումը, խոսքիմա- սային պատկանելությունը և թարգմանությունը: Հաջորդիվ տեղ են գտել ավանդական տարաբնույթ վար- ժություններ, որոնց նպատակն է զարգացնել սովորողների գրա- վոր և բանավոր խոսքը, խորացնել գիտական բառապաշարը, կատարելագործել քերականական հմտությունները: Դասագրքում ընդգրկված վարժությունները միտված են կանխարգելել համընդհանուր բնույթի սխալները, ապահովել լեզվական նյութի ընկալումը: Հեղինակները դասագիրքը կազմե- լիս հիմնվել են նաև իրենց բազմամյա դասավանդման փորձի 5 վրա՝ այն համապատասխանեցնելով դասավանդման ժամանա- կակից պահանջներին: Տրված են նաև մաթեմատիկական խնդիրներ, որոնք հնա- րավորություն կտան ուսանողներին անգլերենով կատարել քննարկումներ իրենց մասնագիտության շուրջ: Դասերում հանդիպող հատուկ անուններն, իրենց տառա- դարձումներով, ամփոփված են տեղեկատու-հավելվածում՝ տվյալ գիտնականի կամ նշված վայրի վերաբերյալ համառոտ տեղեկությամբ: Հավելվածում առանձին բաժնով ներկայացված է մաթեմա- տիկական սիմվոլները, նշանները, կոտորակներն ու բանա- ձևերն անգլերենով արտահայտելու ուղեցույցը: Դասագրքում տեղ է գտել նաև լրացուցիչ ընթերցանության և ինքնուրույն աշխատանքի համար նախատեսված “Miscellaneous” խորագրով բաժինը, որը բաղկացած է մաթեմա- տիկային առնչվող տարբեր թեմաներով չափածո գրվածքներից, հանրահայտ գիտնականների կյանքի զվարճալի պատմություն- ներից և հումորից: Վերոհիշյալ բաժինը ամփոփվում է գիտնականների ասույթ- ներով: Սույն աշխատանքը խորհուրդ է տրվում օգտագործել անգլերեն լեզվի ուսուցանման Մաթեմատիկայի և մեխանիկայի, Ինֆորմատիկայի և կիրառական մաթեմատիկայի ֆակուլտետ- ների բակալավրիատի ուսանողների կրթության համար: Դասագրքի համահեղինակներն իրենց խորին երախտագի- տությունն են հայտնում գրախոսներ ԵՊՀ եվրոպական լեզու- ների և հաղորդակցության ֆակուլտետի անգլերեն լեզվի No 1 ամբիոնի վարիչ, բ.գ.թ., պրոֆեսոր Մ. Հ. Ապրեսյանին, ԵՊՀ մի- 6 ջազգային հարաբերությունների ֆակուլտետի դիվանագիտա- կան ծառայության և մասնագիտական հաղորդակցման ամբիո- նի բ.գ.թ., դոցենտ Ա. Մ. Բաբայանին, ՀԱՊՀ օտար լեզուների ամբիոնի վարիչ, բ.գ.թ. դոցենտ Հ. Զ. Ղազարյանին, ԵՊՀ մա- թեմատիկայի և մեխանիկայի ֆակուլտետի ֆինանսական մաթե- մատիկայի ամբիոնի վարիչ, ֆ.մ.գ.թ., դոցենտ Մ. Պ. Պողոս- յանին` օգտակար դիտարկումների, ինչպես նաև գրքի կայաց- մանը նպաստելու համար: 7 PREFACE The creation of the textbook “Deepdive into Mathematics” stemmed from the need to teach English on Bachelor’s courses and develop students’ study skills necessary to function effectively in a university context. Materials of the textbook are thoroughly selected to provide a good background of English for students-mathematicians and people who are interested in mathematics. The final objective of the textbook is to develop students’ confidence and competence, to make them autonomous learners in order to successfully carry out research and complete assignments, such as essays, reports, theses and oral presentations. The structure of the textbook: The textbook comprises 4 parts. The first part consists of 22 lessons. Each lesson begins with an epigraph, which is aimed at arousing students’ interest toward the contents of the lesson. The material of the texts is taken from different fields of higher mathematics. There are also texts about mathematicians and their contributions to the mathematical science, and the history of mathematics. The text to each lesson is provided with topical words, their transcriptions and translations into Armenian. The texts are followed by various lexical and grammatical exercises to develop students’ reading, writing, speaking skills, improve their grammar knowledge and enrich professional vocabulary. In the final part of each lesson some mathematical problems and puzzles are given to advance students’ skills to read mathematical formulas, prove theorems, memorize definitions in English. “Proper Names” contains valuable information about scientists and the geographical places mentioned in the textbook. 8 “Guide to Mathematical Symbols” possesses big tables of mathe- matical signs, symbols, formulas, equations and the way they are read in English. The last part of the textbook entitled “Miscellaneous” is an additional reading material for students’ individual work. It consists of poems, jokes, humorous stories and quotes on mathematics, as well as interesting facts about prominent scientists and real stories from their lives. 9 CONTENTS ԱՌԱՋԱԲԱՆ.…………………………………………………... 5 PREFACE………………………………………….…………. 8 CONTENTS….………………………………………………….. 10 LESSON 1 WHAT IS MATHEMATICS?.…………………… 12 LESSON 2 THE FIELDS OF MATHEMATICS…………….. 22 LESSON 3 FINANCIAL MATHEMATICS…………………. 37 LESSON 4 WHAT IS AN ACTUARY? …………………….. 47 LESSON 5 GEOMETRY THROUGH THE AGES………..... 57 LESSON 6 ALGEBRA AS A SCIENCE……………… 65 LESSON 7 THE THEORY OF EQUATIONS………… 74 LESSON 8 AMALIE EMMY NOETHER…………………… 82 LESSON 9 THE DIGIT THAT MEANS NOTHING………... 93 LESSON 10 MATHEMATICS AND ART……………. 105 LESSON 11 PROBABILITY………………………………… 113 LESSON 12 THE THEORY OF GAMES…………………… 123 LESSON 13 ALGORITHMS…………………………… 133 LESSON 14 JOHN VON NEUMANN………………………. 144 LESSON 15 THE GAME OF CHESS……………………….. 155 LESSON 16 GEORG CANTOR…………………………….. 167 10 LESSON 17 SET THEORY………………………………….. 177 LESSON 18 THE PRINCE OF AMATEURS…………..…… 187 LESSON 19 NEWTON AND LEIBNIZ ………………..…… 197 LESSON 20 THE THEORY OF ERRORS …………….……. 208 LESSON 21 THOMAS SIMPSON ……………………….…. 219 LESSON 22 ADA LOVELACE…………………………..…. 230 PROPER NAMES………………………………………….... 239 GUIDE TO MATHEMATICAL NOTATION……………... 275 MISCELLANEOUS………………………………………….. 302 BIBLIOGRAPHY…………………………………………….. 323 11 Lesson 1 WHAT IS MATHEMATICS? Mathematics is the science that draws necessary conclusions. BENJAMIN PIERCE`1 The word mathematics comes from Greek. It means “something that must be learnt or understood”. The plural form of the word mathematics goes back to the Latin mathematica based on the Greek plural used by Aristotle meaning “all things mathematical”. Following the pattern of word formation, according to which the words physics, politics, economics, etc. were formed, the English word mathematics came to be used for mathematical study. It is often shortened to maths and takes singular verb forms. Mathematics is the study of quantity, structure, space and change. As Karl Friedrich Gauss had said mathematics is the queen of all sciences. It helps the researchers to formulate new conjectures and establish new disciplines by rigorous deduction from axioms and definitions. Mathematics developed from counting, calculation, measurement and the study of the shapes and motions of physical objects by means of abstraction and logical reasoning. The first uses of mathematics were seen in trading and commerce, land measurement, painting and weaving patterns, the recording of time, taxation, building and construction. The development of mathematics began as early as 3000 BC by the Babylonians and Egyptians, but the systematic study of it began between 600 and 300 BC by the ancient Greeks. Later mathematics continued to develop in China, India and Arabia until the Renaissance when mathematical innovations led to new scientific discoveries. Mathematics has been supplying methods and conclusions for science 12 enabling scientists to predict results, describe phenomena and prepare their minds to new way of thinking. One of the basic characteristics of mathematics is its symbolic language which is commonly acknowledged as “the language of science”. It consists mostly of signs and symbols which are universal and have remained almost unchanged throughout the time. Unlike the common language
Recommended publications
  • Full History of The
    London Mathematical Society Historical Overview Taken from the Introduction to The Book of Presidents 1865-1965 ADRIAN RICE The London Mathematical Society (LMS) is the primary learned society for mathematics in Britain today. It was founded in 1865 for the promotion and extension of mathematical knowledge, and in the 140 years since its foundation this objective has remained unaltered. However, the ways in which it has been attained, and indeed the Society itself, have changed considerably during this time. In the beginning, there were just nine meetings per year, twenty-seven members and a handful of papers printed in the slim first volume of the ’s Society Proceedings. Today, with a worldwide membership in excess of two thousand, the LMS is responsible for numerous books, journals, monographs, lecture notes, and a whole range of meetings, conferences, lectures and symposia. The Society continues to uphold its original remit, but via an increasing variety of activities, ranging from advising the government on higher education, to providing financial support for a wide variety of mathematically-related pursuits. At the head of the Society there is, and always has been, a President, who is elected annually and who may serve up to two years consecutively. As befits a prestigious national organization, these Presidents have often been famous mathematicians, well known and respected by the mathematical community of their day; they include Cayley and Sylvester, Kelvin and Rayleigh, Hardy and Littlewood, Atiyah and Zeeman.1 But among the names on the presidential role of honour are many people who are perhaps not quite so famous today, ’t have theorems named after them, and who are largely forgotten by the majority of who don modern-day mathematicians.
    [Show full text]
  • Birds and Frogs Equation
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Quadratic Diophantine Multiscale Principles of Equations Finite Harmonic of the American Mathematical Society T. Andreescu, University of Texas at Element Analysis February 2009 Volume 56, Number 2 Dallas, Richardson, TX, USA; D. Andrica, Methods A. Deitmar, University Cluj-Napoca, Romania Theory and University of This text treats the classical theory of Applications Tübingen, quadratic diophantine equations and Germany; guides readers through the last two Y. Efendiev, Texas S. Echterhoff, decades of computational techniques A & M University, University of and progress in the area. The presenta- College Station, Texas, USA; T. Y. Hou, Münster, Germany California Institute of Technology, tion features two basic methods to This gently-paced book includes a full Pasadena, CA, USA investigate and motivate the study of proof of Pontryagin Duality and the quadratic diophantine equations: the This text on the main concepts and Plancherel Theorem. The authors theories of continued fractions and recent advances in multiscale finite emphasize Banach algebras as the quadratic fields. It also discusses Pell’s element methods is written for a broad cleanest way to get many fundamental Birds and Frogs equation. audience. Each chapter contains a results in harmonic analysis. simple introduction, a description of page 212 2009. Approx. 250 p. 20 illus. (Springer proposed methods, and numerical 2009. Approx. 345 p. (Universitext) Monographs in Mathematics) Softcover examples of those methods. Softcover ISBN 978-0-387-35156-8 ISBN 978-0-387-85468-7 $49.95 approx. $59.95 2009. X, 234 p. (Surveys and Tutorials in The Strong Free Will the Applied Mathematical Sciences) Solving Softcover Theorem Introduction to Siegel the Pell Modular Forms and ISBN: 978-0-387-09495-3 $44.95 Equation page 226 Dirichlet Series Intro- M.
    [Show full text]
  • RM Calendar 2011
    Rudi Mathematici x4-8.212x3+25.286.894x2-34.603.963.748x+17.756.354.226.585 =0 Rudi Mathematici January 1 S (1894) Satyendranath BOSE Putnam 1996 - A1 (1878) Agner Krarup ERLANG (1912) Boris GNEDENKO Find the least number A such that for any two (1803) Guglielmo LIBRI Carucci dalla Sommaja RM132 squares of combined area 1, a rectangle of 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS area A exists such that the two squares can be (1938) Anatoly SAMOILENKO packed in the rectangle (without interior (1905) Lev Genrichovich SHNIRELMAN overlap). You may assume that the sides of 1 3 M (1917) Yuri Alexeievich MITROPOLSKY the squares are parallel to the sides of the rectangle. 4 T (1643) Isaac NEWTON RM071 5 W (1871) Federigo ENRIQUES RM084 Math pickup lines (1871) Gino FANO (1838) Marie Ennemond Camille JORDAN My love for you is a monotonically increasing 6 T (1807) Jozeph Mitza PETZVAL unbounded function. (1841) Rudolf STURM MathJokes4MathyFolks 7 F (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY Ten percent of all car thieves are left-handed. 8 S (1924) Paul Moritz COHN All polar bears are left-handed. (1888) Richard COURANT If your car is stolen, there’s a 10% chance it (1942) Stephen William HAWKING was taken by a polar bear. 9 S (1864) Vladimir Adreievich STEKLOV The description of right lines and circles, upon 2 10 M (1905) Ruth MOUFANG which geometry is founded, belongs to (1875) Issai SCHUR mechanics. Geometry does not teach us to 11 T (1545) Guidobaldo DEL MONTE RM120 draw these lines, but requires them to be (1734) Achille Pierre Dionis DU SEJOUR drawn.
    [Show full text]
  • Mathematicians I Have Known
    Mathematicians I have known Michael Atiyah http://www.maths.ed.ac.uk/~aar/atiyahpg Trinity Mathematical Society Cambridge 3rd February 20 ! P1 The Michael and Lily Atiyah /ortrait 0allery 1ames Clerk Ma'well 2uilding, 3niversity o# *dinburgh The "ortraits of mathematicians dis"layed in this collection have been "ersonally selected by us. They have been chosen for many di##erent reasons, but all have been involved in our mathematical lives in one way or another; many of the individual te'ts to the gallery "ortraits e'"lain how they are related to us. First% there are famous names from the "ast ( starting with Archimedes ( who have built the great edifice of mathematics which we inhabit$ This early list could have been more numerous, but it has been restricted to those whose style is most a""ealing to us. )e't there are the many teachers, both in Edinburgh and in Cambridge% who taught us at various stages% and who directly influenced our careers. The bulk of the "ortraits are those o# our contemporaries, including some close collaborators and many Fields Medallists. +ily has a special interest in women mathematicians: they are well re"resented% both "ast and "resent$ Finally we come to the ne't generation, our students$ -f course% many of the categories overla"% with students later becoming collaborators and #riends. It was hardest to kee" the overall number down to seventy, to #it the gallery constraints! P2 4 Classical P3 Leonhard Euler 2asel 505 ( St$ /etersburg 563 The most proli#ic mathematician of any period$ His collected works in more than 53 volumes are still in the course of publication.
    [Show full text]
  • The Role of GH Hardy and the London Mathematical Society
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 173–194 www.elsevier.com/locate/hm The rise of British analysis in the early 20th century: the role of G.H. Hardy and the London Mathematical Society Adrian C. Rice a and Robin J. Wilson b,∗ a Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA b Department of Pure Mathematics, The Open University, Milton Keynes MK7 6AA, UK Abstract It has often been observed that the early years of the 20th century witnessed a significant and noticeable rise in both the quantity and quality of British analysis. Invariably in these accounts, the name of G.H. Hardy (1877–1947) features most prominently as the driving force behind this development. But how accurate is this interpretation? This paper attempts to reevaluate Hardy’s influence on the British mathematical research community and its analysis during the early 20th century, with particular reference to his relationship with the London Mathematical Society. 2003 Elsevier Inc. All rights reserved. Résumé On a souvent remarqué que les premières années du 20ème siècle ont été témoins d’une augmentation significative et perceptible dans la quantité et aussi la qualité des travaux d’analyse en Grande-Bretagne. Dans ce contexte, le nom de G.H. Hardy (1877–1947) est toujours indiqué comme celui de l’instigateur principal qui était derrière ce développement. Mais, est-ce-que cette interprétation est exacte ? Cet article se propose d’analyser à nouveau l’influence d’Hardy sur la communauté britannique sur la communauté des mathématiciens et des analystes britanniques au début du 20ème siècle, en tenant compte en particulier de son rapport avec la Société Mathématique de Londres.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8188x3+25139294x2-34301407052x+17549638999785=0 Rudi Mathematici January 53 1 S (1803) Guglielmo LIBRI Carucci dalla Sommaja Putnam 1999 - A1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Find polynomials f(x), g(x), and h(x) _, if they exist, (1912) Boris GNEDENKO such that for all x 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS f (x) − g(x) + h(x) = (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO −1 if x < −1 1 3 M (1917) Yuri Alexeievich MITROPOLSHY 4 T (1643) Isaac NEWTON = 3x + 2 if −1 ≤ x ≤ 0 5 W (1838) Marie Ennemond Camille JORDAN − + > (1871) Federigo ENRIQUES 2x 2 if x 0 (1871) Gino FANO (1807) Jozeph Mitza PETZVAL 6 T Publish or Perish (1841) Rudolf STURM "Gustatory responses of pigs to various natural (1871) Felix Edouard Justin Emile BOREL 7 F (1907) Raymond Edward Alan Christopher PALEY and artificial compounds known to be sweet in (1888) Richard COURANT man," D. Glaser, M. Wanner, J.M. Tinti, and 8 S (1924) Paul Moritz COHN C. Nofre, Food Chemistry, vol. 68, no. 4, (1942) Stephen William HAWKING January 10, 2000, pp. 375-85. (1864) Vladimir Adreievich STELKOV 9 S Murphy's Laws of Math 2 10 M (1875) Issai SCHUR (1905) Ruth MOUFANG When you solve a problem, it always helps to (1545) Guidobaldo DEL MONTE 11 T know the answer. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of (1906) Kurt August HIRSCH 12 W mathematics.
    [Show full text]
  • UNIVERSITY of ANTWERP Faculty of Applied Economics City Campus Prinsstraat 13, B.226 B-2000 Antwerp Tel
    DEPARTMENT OF ECONOMICS All but one: How pioneers of linear economics overlooked Perron-Frobenius mathematics Wilfried Parys UNIVERSITY OF ANTWERP Faculty of Applied Economics City Campus Prinsstraat 13, B.226 B-2000 Antwerp Tel. +32 (0)3 265 40 32 Fax +32 (0)3 265 47 99 www.uantwerpen.be FACULTY OF APPLIED ECONOMICS DEPARTMENT OF ECONOMICS All but one: How pioneers of linear economics overlooked Perron-Frobenius mathematics Wilfried Parys RESEARCH PAPER 2013-030 DECEMBER 2013 University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium Research Administration – room B.226 phone: (32) 3 265 40 32 fax: (32) 3 265 47 99 e-mail: [email protected] The research papers from the Faculty of Applied Economics are also available at www.repec.org (Research Papers in Economics - RePEc) D/2013/1169/030 All but one: How pioneers of linear economics overlooked Perron-Frobenius mathematics Wilfried PARYS Acknowledgements: Previous versions of this paper were presented at the 17th Annual Conference of the European Society for the History of Economic Thought at Kingston University, London, in May 2013, and at the Colloquium on The Pioneers of Linear Models of Production, University of Paris Ouest, Nanterre, in January 2013. I thank the participants of these conferences for their useful comments. I am indebted to Thomas Hawkins for his stimulating communications on Perron- Frobenius since 2005, and for his valuable comments on my January 2013 version. Section 3 benefited from earlier discussions on Potron with Christian Bidard and Guido Erreygers. I am grateful for some interesting remarks by Olav Bjerkholt, Nerio Naldi, Arrigo Opocher, Hans Schneider, and by the late Franz Alt and the late Paul Samuelson.
    [Show full text]
  • 5. Demise of the Dogmatic Universe 1895 CE– 1950 CE
    5. Demise of the Dogmatic Universe 1895 CE– 1950 CE Maturation of Abstract Algebra and the Grand Fusion of Geometry, Algebra and Topology Logic, Set Theory, Foundation of Mathematics and the Genesis of Computer Science Modern Analysis Electrons, Atoms and Quanta Einstein’s Relativity and the Geometrization of Gravity; The Expanding Universe Preliminary Attempts to Geometrize Non-Gravitational Interactions Subatomic Physics: Quantum Mechanics and Electrodynamics; Nuclear Physics Reduction of Chemistry to Physics; Condensed Matter Physics; The 4th State of Matter The Conquest of Distance by Automobile, Aircraft and Wireless Communication; Cinematography The ‘Flaming Sword’: Antibiotics and Nuclear Weapons Unfolding Basic Biostructures: Chromosomes, Genes, Hormones, Enzymes and Viruses; Proteins and Amino Acids Technology: Early Laser Theory; Holography; Magnetic Recording and Vacuum Tubes; Invention of the Transistor ‘Big Science’: Accelerators; The Manhattan Project 1895–1950 CE 3 Personae Wilhelm R¨ontgen 25 August and Louis Lumi´ere 25 Hendrik · · Lorentz 25 Guglielmo Marconi 26 Georg Wulff 26 Wallace · · · Sabine 27 Horace Lamb 27 Thorvald Thiele 27 Herbert George · · · Wells 33 Charles Sherrington 69 Arthur Schuster 71 Max von · · · Gruber 71 Jacques Hadamard 71 Henry Ford 74 Antoine Henri · · · Becquerel 74 Hjalmar Mellin 75 Arnold Sommerfeld 76 Vil- · · · fredo Pareto 77 Emil´ Borel 78 Joseph John Thomson 88 Al- · · · fred Tauber 90 Frederick Lanchester 92 Ernest Barnes 93 Adolf · · · Loos 92 Vilhelm Bjerkens 93 Ivan Bloch 94 Marie
    [Show full text]
  • NEWSLETTER Issue: 484 - September 2019
    i “NLMS_484” — 2019/9/11 — 16:05 — page 1 — #1 i i i NEWSLETTER Issue: 484 - September 2019 ETHICS IN DRINFELD MODULES COMPUTERS MATHEMATICS AND FACTORISATION AND PROOF i i i i i “NLMS_484” — 2019/9/11 — 16:05 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Iain Moatt (Royal Holloway, University of London) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or photog- Tomasz Brzezinski (Swansea University) rapher for the rights to reproduce. The LMS Lucia Di Vizio (CNRS) cannot accept responsibility for the accuracy of Jonathan Fraser (University of St Andrews) information in the Newsletter. Views expressed Jelena Grbic´ (University of Southampton) do not necessarily represent the views or policy Thomas Hudson (University of Warwick) of the Editorial Team or London Mathematical Stephen Huggett (University of Plymouth) Society. Adam Johansen (University of Warwick) Bill Lionheart (University of Manchester) ISSN: 2516-3841 (Print) Mark McCartney (Ulster University) ISSN: 2516-385X (Online) Kitty Meeks (University of Glasgow) DOI: 10.1112/NLMS Vicky Neale (University of Oxford) Susan Oakes (London Mathematical Society) Andrew Wade (Durham University) NEWSLETTER WEBSITE Early Career Content Editor: Vicky Neale The Newsletter is freely available electronically News Editor: Susan Oakes at lms.ac.uk/publications/lms-newsletter. Reviews Editor: Mark McCartney MEMBERSHIP CORRESPONDENTS AND STAFF Joining the LMS is a straightforward process.
    [Show full text]
  • Attacking the Citadel: Making Economics Fit for Purpose
    1st World Keynes Conference Izmir University of Economics, Izmir / Turkey, June 26 – 29, 2013 Attacking the Citadel: Making Economics Fit for Purpose Shackle’s Years of High Theory 1926 – 1939 [- 1960] and the Making of Classical-Keynesian Political Economy From the Exchange Paradigm to a Monetary Theory of Production Heinrich Bortis University of Fribourg / Switzerland Contents Introduction: Problem and Plan 3 1 Neoclassical domination since the Marginalist Revolution 1870 – 1890 7 2 Shackle’s Years of High Theory 1926-39: a Classical-Keynesian counterrevolution 11 The Keynesian revolution: the principle of effective demand 12 Piero Sraffa and the revival of classical political economy 15 Conclusion: a theoretical abyss between Keynes and Sraffa 24 3 The gap between Keynes and Sraffa: uncertainty versus determinism 26 4 Bridging the gap: Pasinetti’s contribution 28 Principles and theories 30 The equilibrium notion 32 Nature and man (land and labour), and the social process of production 33 Linking the Classics with Keynes 34 1 5 The classical-Keynesian system of political economy 35 Principles and theories in a classical-Keynesian setting 35 The social process of production as the starting point 38 Production, value and distribution 40 Proportions and scale: classical and Keynesian macroeconomics – monetary theory of Production 47 The proportions aspect of classical-Keynesian political economy 48 The scale aspect of classical-Keynesian political economy 52 Finance and money - interactions between the real and the financial sector 58
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8180x3+25090190x2-34200948100x+17481136677369=0 Rudi Mathematici January 1 1 W (1803) Guglielmo LIBRI Carucci dalla Somaja APMO 1989 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Let x1 , x2 , , xn be positive real numbers, (1912) Boris GNEDENKO n 2 T (1822) Rudolf Julius Emmanuel CLAUSIUS (1905) Lev Genrichovich SHNIRELMAN = and let S xi . (1938) Anatoly SAMOILENKO i=1 3 F (1917) Yuri Alexeievich MITROPOLSHY Prove that 4 S (1643) Isaac NEWTON i (1838) Marie Ennemond Camille JORDAN n n 5 S S (1871) Federigo ENRIQUES ()+ ≤ ∏ 1 xi (1871) Gino FANO i=1 i=0 i! 2 6 M (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM The Dictionary 7 T (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY Clearly: I don't want to write down (1888) Richard COURANT 8 W (1924) Paul Moritz COHN all the "in-between" steps. (1942) Stephen William HAWKING The First Law of Applied 9 T (1864) Vladimir Adreievich STELKOV Mathematics: All infinite series 10 F (1875) Issai SCHUR (1905) Ruth MOUFANG converge, and moreover converge to 11 S (1545) Guidobaldo DEL MONTE the first term. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR A mathematician's reputation rests 12 S (1906) Kurt August HIRSCH on the number of bad proofs he has 3 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN (1876) Luther Pfahler EISENHART given. (1876) Erhard SCHMIDT Abram BESICOVITCH 14 T (1902) Alfred TARSKI 15 W (1704) Johann CASTILLON Probabilities must be regarded as (1717) Mattew STEWART analogous to the measurements of (1850) Sofia Vasilievna KOVALEVSKAJA physical magnitudes; that is to say, 16 T (1801) Thomas KLAUSEN they can never be known exactly, but 17 F (1847) Nikolay Egorovich ZUKOWSKY (1858) Gabriel KOENIGS only within certain approximation.
    [Show full text]
  • Mathematicians I Have Known
    Mathematicians I have known Michael Atiyah http://www.maths.ed.ac.uk/~aar/atiyahpg Trinity Mathematical Society Cambridge 3rd February, 2 !" T1 The Michael and +ily Atiyah Portrait Gallery 1ames Clerk Ma'well 2uilding, 3niversity o$ *dinburgh The #ortraits of mathematicians displayed in this collection have been #ersonally selected by us. They have been chosen for many di$ferent reasons, but all have been involved in our mathematical lives in one way or another; many of the individual te'ts to the gallery #ortraits e'#lain how they are related to us. First, there are famous names from the #ast ( starting with Archimedes ( who have built the great edi$ice of mathematics which we inhabit% This early list could have been more numerous, but it has been restricted to those whose style is most a##ealing to us. )e't there are the many 2teachers, both in Edinburgh and in Cambridge, who taught us at various stages, and who directly influenced our careers. The bulk of the #ortraits are those of our contemporaries, including some close collaborators and many Fields Medallists. +ily has a special interest in women mathematicians: they are well re#resented, both #ast and #resent% Finally we come to the ne't generation, our students% -f course, many of the categories overla#, with students later becoming collaborators and $riends. It was hardest to kee# the overall number down to seventy, to $it the gallery constraints! T2 !4 Classical T3 Leonhard Euler Studied in Basel% Worked in St% Petersburg and Berlin% F6S% 7is name ap#ears in all branches o$ mathematics:
    [Show full text]