Freeman Dyson

Total Page:16

File Type:pdf, Size:1020Kb

Freeman Dyson Birds and Frogs Freeman Dyson ome mathematicians are birds, others skill as a mathematician. In his later years he hired are frogs. Birds fly high in the air and younger colleagues with the title of assistants to survey broad vistas of mathematics out do mathematical calculations for him. His way of to the far horizon. They delight in con- thinking was physical rather than mathematical. cepts that unify our thinking and bring He was supreme among physicists as a bird who Stogether diverse problems from different parts of saw further than others. I will not talk about Ein- the landscape. Frogs live in the mud below and see stein since I have nothing new to say. only the flowers that grow nearby. They delight in the details of particular objects, and they solve Francis Bacon and René Descartes problems one at a time. I happen to be a frog, but At the beginning of the seventeenth century, two many of my best friends are birds. The main theme great philosophers, Francis Bacon in England and of my talk tonight is this. Mathematics needs both René Descartes in France, proclaimed the birth of birds and frogs. Mathematics is rich and beautiful modern science. Descartes was a bird, and Bacon because birds give it broad visions and frogs give it was a frog. Each of them described his vision of intricate details. Mathematics is both great art and the future. Their visions were very different. Bacon important science, because it combines generality said, “All depends on keeping the eye steadily fixed of concepts with depth of structures. It is stupid on the facts of nature.” Descartes said, “I think, to claim that birds are better than frogs because therefore I am.” According to Bacon, scientists they see farther, or that frogs are better than birds should travel over the earth collecting facts, until because they see deeper. The world of mathemat- the accumulated facts reveal how Nature works. ics is both broad and deep, and we need birds and The scientists will then induce from the facts the frogs working together to explore it. laws that Nature obeys. According to Descartes, This talk is called the Einstein lecture, and I am scientists should stay at home and deduce the grateful to the American Mathematical Society laws of Nature by pure thought. In order to deduce for inviting me to do honor to Albert Einstein. the laws correctly, the scientists will need only Einstein was not a mathematician, but a physicist the rules of logic and knowledge of the existence who had mixed feelings about mathematics. On of God. For four hundred years since Bacon and the one hand, he had enormous respect for the Descartes led the way, science has raced ahead power of mathematics to describe the workings by following both paths simultaneously. Neither of nature, and he had an instinct for mathematical Baconian empiricism nor Cartesian dogmatism beauty which led him onto the right track to find has the power to elucidate Nature’s secrets by nature’s laws. On the other hand, he had no inter- itself, but both together have been amazingly suc- est in pure mathematics, and he had no technical cessful. For four hundred years English scientists have tended to be Baconian and French scientists Freeman Dyson is an emeritus professor in the School of Cartesian. Faraday and Darwin and Rutherford Natural Sciences, Institute for Advanced Study, Princeton, were Baconians; Pascal and Laplace and Poincaré NJ. His email address is [email protected]. were Cartesians. Science was greatly enriched by This article is a written version of his AMS Einstein Lecture, the cross-fertilization of the two contrasting cul- which was to have been given in October 2008 but which tures. Both cultures were always at work in both unfortunately had to be canceled. countries. Newton was at heart a Cartesian, using 212 NNOTICESOTICES OFOF THETHE AMAMSS VOLUMEOLUME 56, NUMBERUMBER 2 pure thought as Descartes intended, and using wave mechanics in 1926. Schrödinger was a bird it to demolish the Cartesian dogma of vortices. who started from the idea of unifying mechanics Marie Curie was at heart a Baconian, boiling tons with optics. A hundred years earlier, Hamilton had of crude uranium ore to demolish the dogma of unified classical mechanics with ray optics, using the indestructibility of atoms. the same mathematics to describe optical rays In the history of twentieth century mathematics, and classical particle trajectories. Schrödinger’s there were two decisive events, one belonging to idea was to extend this unification to wave optics the Baconian tradition and the other to the Carte- and wave mechanics. Wave optics already existed, sian tradition. The first was the International Con- but wave mechanics did not. Schrödinger had to gress of Mathematicians in Paris in 1900, at which invent wave mechanics to complete the unification. Hilbert gave the keynote address, Starting from wave optics as a model, charting the course of mathematics he wrote down a differential equa- for the coming century by propound- tion for a mechanical particle, but the ing his famous list of twenty-three equation made no sense. The equation outstanding unsolved problems. Hil- looked like the equation of conduction bert himself was a bird, flying high of heat in a continuous medium. Heat over the whole territory of mathemat- conduction has no visible relevance to ics, but he addressed his problems to particle mechanics. Schrödinger’s idea the frogs who would solve them one seemed to be going nowhere. But then at a time. The second decisive event came the surprise. Schrödinger put was the formation of the Bourbaki the square root of minus one into the group of mathematical birds in France equation, and suddenly it made sense. in the 1930s, dedicated to publish- Suddenly it became a wave equation ing a series of textbooks that would instead of a heat conduction equation. establish a unifying framework for Francis Bacon And Schrödinger found to his delight all of mathematics. The Hilbert prob- that the equation has solutions cor- lems were enormously successful in responding to the quantized orbits in guiding mathematical research into the Bohr model of the atom. fruitful directions. Some of them were It turns out that the Schrödinger solved and some remain unsolved, equation describes correctly every- but almost all of them stimulated the thing we know about the behavior of growth of new ideas and new fields atoms. It is the basis of all of chem- of mathematics. The Bourbaki project istry and most of physics. And that was equally influential. It changed the square root of minus one means that style of mathematics for the next fifty nature works with complex numbers years, imposing a logical coherence and not with real numbers. This dis- that did not exist before, and moving covery came as a complete surprise, the emphasis from concrete examples to Schrödinger as well as to every- to abstract generalities. In the Bour- body else. According to Schrödinger, René Descartes baki scheme of things, mathematics is his fourteen-year-old girl friend Itha the abstract structure included in the Junger said to him at the time, “Hey, Bourbaki textbooks. What is not in the textbooks you never even thought when you began that so is not mathematics. Concrete examples, since they much sensible stuff would come out of it.” All do not appear in the textbooks, are not math- through the nineteenth century, mathematicians ematics. The Bourbaki program was the extreme from Abel to Riemann and Weierstrass had been expression of the Cartesian style. It narrowed the creating a magnificent theory of functions of scope of mathematics by excluding the beautiful complex variables. They had discovered that the flowers that Baconian travelers might collect by theory of functions became far deeper and more the wayside. powerful when it was extended from real to com- plex numbers. But they always thought of complex Jokes of Nature numbers as an artificial construction, invented by For me, as a Baconian, the main thing missing in human mathematicians as a useful and elegant the Bourbaki program is the element of surprise. abstraction from real life. It never entered their The Bourbaki program tried to make mathematics heads that this artificial number system that they logical. When I look at the history of mathematics, had invented was in fact the ground on which I see a succession of illogical jumps, improbable atoms move. They never imagined that nature had coincidences, jokes of nature. One of the most got there first. profound jokes of nature is the square root of Another joke of nature is the precise linearity minus one that the physicist Erwin Schrödinger of quantum mechanics, the fact that the possible put into his wave equation when he invented states of any physical object form a linear space. FEBRUARY 2009 NOTICES OF THE AMS 213 Before quantum mechanics was invented, classical second commandment says: “Let your acts be di- physics was always nonlinear, and linear models rected towards a worthy goal, but do not ask if they were only approximately valid. After quantum can reach it: they are to be models and examples, mechanics, nature itself suddenly became linear. not means to an end.” Szilard practiced what he This had profound consequences for mathemat- preached. He was the first physicist to imagine ics. During the nineteenth century Sophus Lie nuclear weapons and the first to campaign ac- developed his elaborate theory of continuous tively against their use. His second commandment groups, intended to clarify the behavior of classical certainly applies here. The proof of the Riemann dynamical systems.
Recommended publications
  • Preliminary Acknowledgments
    PRELIMINARY ACKNOWLEDGMENTS The central thesis of I Am You—that we are all the same person—is apt to strike many readers as obviously false or even absurd. How could you be me and Hitler and Gandhi and Jesus and Buddha and Greta Garbo and everybody else in the past, present and future? In this book I explain how this is possible. Moreover, I show that this is the best explanation of who we are for a variety of reasons, not the least of which is that it provides the metaphysical foundations for global ethics. Variations on this theme have been voiced periodically throughout the ages, from the Upanishads in the Far East, Averroës in the Middle East, down to Josiah Royce in the North East (and West). More recently, a number of prominent 20th century physicists held this view, among them Erwin Schrödinger, to whom it came late, Fred Hoyle, who arrived at it in middle life, and Freeman Dyson, to whom it came very early as it did to me. In my youth I had two different types of experiences, both of which led to the same inexorable conclusion. Since, in hindsight, I would now classify one of them as “mystical,” I will here speak only of the other—which is so similar to the experience Freeman Dyson describes that I have conveniently decided to let the physicist describe it for “both” of “us”: Enlightenment came to me suddenly and unexpectedly one afternoon in March when I was walking up to the school notice board to see whether my name was on the list for tomorrow’s football game.
    [Show full text]
  • Computer Oral History Collection, 1969-1973, 1977
    Computer Oral History Collection, 1969-1973, 1977 INTERVIEWEES: John Todd & Olga Taussky Todd INTERVIEWER: Henry S. Tropp DATE OF INTERVIEW: July 12, 1973 Tropp: This is a discussion with Doctor and Mrs. Todd in their apartment at the University of Michigan on July 2nd, l973. This question that I asked you earlier, Mrs. Todd, about your early meetings with Von Neumann, I think are just worth recording for when you first met him and when you first saw him. Olga Tauskky Todd: Well, I first met him and saw him at that time. I actually met him at that location, he was lecturing in the apartment of Menger to a private little set. Tropp: This was Karl Menger's apartment in Vienna? Olga Tauskky Todd: In Vienna, and he was on his honeymoon. And he lectured--I've forgotten what it was about, I am ashamed to say. It would come back, you know. It would come back, but I cannot recall it at this moment. It had nothing to do with game theory. I don't know, something in.... John Todd: She has a very good memory. It will come back. Tropp: Right. Approximately when was this? Before l930? Olga Tauskky Todd: For additional information, contact the Archives Center at 202.633.3270 or [email protected] Computer Oral History Collection, 1969-1973, 1977 No. I think it may have been in 1932 or something like that. Tropp: In '32. Then you said you saw him again at Goettingen, after the-- Olga Tauskky Todd: I saw him at Goettingen.
    [Show full text]
  • Richard Phillips Feynman Physicist and Teacher Extraordinary
    ARTICLE-IN-A-BOX Richard Phillips Feynman Physicist and Teacher Extraordinary The first three decades of the twentieth century have been among the most momentous in the history of physics. The first saw the appearance of special relativity and the birth of quantum theory; the second the creation of general relativity. And in the third, quantum mechanics proper was discovered. These developments shaped the progress of fundamental physics for the rest of the century and beyond. While the two relativity theories were largely the creation of Albert Einstein, the quantum revolution took much more time and involved about a dozen of the most creative minds of a couple of generations. Of all those who contributed to the consolidation and extension of the quantum ideas in later decades – now from the USA as much as from Europe and elsewhere – it is generally agreed that Richard Phillips Feynman was the most gifted, brilliant and intuitive genius out of many extremely gifted physicists. Here are descriptions of him by leading physicists of his own, and older as well as younger generations: “He is a second Dirac, only this time more human.” – Eugene Wigner …Feynman was not an ordinary genius but a magician, that is one “who does things that nobody else could ever do and that seem completely unexpected.” – Hans Bethe “… an honest man, the outstanding intuitionist of our age and a prime example of what may lie in store for anyone who dares to follow the beat of a different drum..” – Julian Schwinger “… the most original mind of his generation.” – Freeman Dyson Richard Feynman was born on 11 May 1918 in Far Rockaway near New York to Jewish parents Lucille Phillips and Melville Feynman.
    [Show full text]
  • Disturbing the Memory
    1 1 February 1984 DISTURBING THE MEMORY E. T. Jaynes, St. John's College, Cambridge CB2 1TP,U.K. This is a collection of some weird thoughts, inspired by reading "Disturbing the Universe" by Freeman Dyson 1979, which I found in a b o okstore in Cambridge. He reminisces ab out the history of theoretical physics in the p erio d 1946{1950, particularly interesting to me b ecause as a graduate student at just that time, I knew almost every p erson he mentions. From the rst part of Dyson's b o ok we can learn ab out some incidents of this imp ortant p erio d in the development of theoretical physics, in which the present writer happ ened to b e a close and interested onlo oker but, regrettably, not a participant. Dyson's account lled in several gaps in myown knowledge, and in so doing disturb ed my memory into realizing that I in turn maybein a p osition to ll in some gaps in Dyson's account. Perhaps it would have b een b etter had I merely added myown reminiscences to Dyson's and left it at that. But like Dyson in the last part of his b o ok, I found it more fun to build a structure of conjectures on the rather lo ose framework of facts at hand. So the following is o ered only as a conjecture ab out how things mighthave b een; i.e. it ts all the facts known to me, and seems highly plausible from some vague impressions that I have retained over the years.
    [Show full text]
  • Council for Innovative Research Peer Review Research Publishing System
    ISSN 2347-3487 Einstein's gravitation is Einstein-Grossmann's equations Alfonso Leon Guillen Gomez Independent scientific researcher, Bogota, Colombia E-mail: [email protected] Abstract While the philosophers of science discuss the General Relativity, the mathematical physicists do not question it. Therefore, there is a conflict. From the theoretical point view “the question of precisely what Einstein discovered remains unanswered, for we have no consensus over the exact nature of the theory's foundations. Is this the theory that extends the relativity of motion from inertial motion to accelerated motion, as Einstein contended? Or is it just a theory that treats gravitation geometrically in the spacetime setting?”. “The voices of dissent proclaim that Einstein was mistaken over the fundamental ideas of his own theory and that their basic principles are simply incompatible with this theory. Many newer texts make no mention of the principles Einstein listed as fundamental to his theory; they appear as neither axiom nor theorem. At best, they are recalled as ideas of purely historical importance in the theory's formation. The very name General Relativity is now routinely condemned as a misnomer and its use often zealously avoided in favour of, say, Einstein's theory of gravitation What has complicated an easy resolution of the debate are the alterations of Einstein's own position on the foundations of his theory”, (Norton, 1993) [1]. Of other hand from the mathematical point view the “General Relativity had been formulated as a messy set of partial differential equations in a single coordinate system. People were so pleased when they found a solution that they didn't care that it probably had no physical significance” (Hawking and Penrose, 1996) [2].
    [Show full text]
  • Arxiv:1601.07125V1 [Math.HO]
    CHALLENGES TO SOME PHILOSOPHICAL CLAIMS ABOUT MATHEMATICS ELIAHU LEVY Abstract. In this note some philosophical thoughts and observations about mathematics are ex- pressed, arranged as challenges to some common claims. For many of the “claims” and ideas in the “challenges” see the sources listed in the references. .1. Claim. The Antinomies in Set Theory, such as the Russell Paradox, just show that people did not have a right concept about sets. Having the right concept, we get rid of any contradictions. Challenge. It seems that this cannot be honestly said, when often in “axiomatic” set theory the same reasoning that leads to the Antinomies (say to the Russell Paradox) is used to prove theorems – one does not get to the contradiction, but halts before the “catastrophe” to get a theorem. As if the reasoning that led to the Antinomies was not “illegitimate”, a result of misunderstanding, but we really have a contradiction (antinomy) which we, somewhat artificially, “cut”, by way of the axioms, to save our consistency. One may say that the phenomena described in the famous G¨odel’s Incompleteness Theorem are a reflection of the Antinomies and the resulting inevitability of an axiomatics not entirely parallel to intuition. Indeed, G¨odel’s theorem forces us to be presented with a statement (say, the consistency of Arithmetics or of Set Theory) which we know we cannot prove, while intuition puts a “proof” on the tip of our tongue, so to speak (that’s how we “know” that the statement is true!), but which our axiomatics, forced to deviate from intuition to be consistent, cannot recognize.
    [Show full text]
  • K-Theory and Algebraic Geometry
    http://dx.doi.org/10.1090/pspum/058.2 Recent Titles in This Series 58 Bill Jacob and Alex Rosenberg, editors, ^-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara) 57 Michael C. Cranston and Mark A. Pinsky, editors, Stochastic analysis (Cornell University, Ithaca) 56 William J. Haboush and Brian J. Parshall, editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. O. Wells, Jr., editor, The mathematical heritage of Hermann Weyl (Duke University, Durham, May 1987) 47 Paul Fong, editor, The Areata conference on representations of finite groups (Humboldt State University, Areata, California, July 1986) 46 Spencer J. Bloch, editor, Algebraic geometry - Bowdoin 1985 (Bowdoin College, Brunswick, Maine, July 1985) 45 Felix E.
    [Show full text]
  • Advanced Information on the Nobel Prize in Physics, 5 October 2004
    Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force.
    [Show full text]
  • Yang-Mills Theory, Lattice Gauge Theory and Simulations
    Yang-Mills theory, lattice gauge theory and simulations David M¨uller Institute of Analysis Johannes Kepler University Linz [email protected] May 22, 2019 1 Overview Introduction and physical context Classical Yang-Mills theory Lattice gauge theory Simulating the Glasma in 2+1D 2 Introduction and physical context 3 Yang-Mills theory I Formulated in 1954 by Chen Ning Yang and Robert Mills I A non-Abelian gauge theory with gauge group SU(Nc ) I A non-linear generalization of electromagnetism, which is a gauge theory based on U(1) I Gauge theories are a widely used concept in physics: the standard model of particle physics is based on a gauge theory with gauge group U(1) × SU(2) × SU(3) I All fundamental forces (electromagnetism, weak and strong nuclear force, even gravity) are/can be formulated as gauge theories 4 Classical Yang-Mills theory Classical Yang-Mills theory refers to the study of the classical equations of motion (Euler-Lagrange equations) obtained from the Yang-Mills action Main topic of this seminar: solving the classical equations of motion of Yang-Mills theory numerically Not topic of this seminar: quantum field theory, path integrals, lattice quantum chromodynamics (except certain methods), the Millenium problem related to Yang-Mills . 5 Classical Yang-Mills in the early universe 6 Classical Yang-Mills in the early universe Electroweak phase transition: the electro-weak force splits into the weak nuclear force and the electromagnetic force This phase transition can be studied using (extensions of) classical Yang-Mills theory Literature: I G. D.
    [Show full text]
  • CALCULUS for the UTTERLY CONFUSED Has Proven to Be a Wonderful Review Enabling Me to Move Forward in Application of Calculus and Advanced Topics in Mathematics
    TLFeBOOK WHAT READERS ARE SAYIN6 "I wish I had had this book when I needed it most, which was during my pre-med classes. It could have also been a great tool for me in a few medical school courses." Or. Kellie Aosley8 Recent Hedical school &a&ate "CALCULUS FOR THE UTTERLY CONFUSED has proven to be a wonderful review enabling me to move forward in application of calculus and advanced topics in mathematics. I found it easy to use and great as a reference for those darker aspects of calculus. I' Aaron Ladeville, Ekyiheeriky Student 'I1 am so thankful for CALCULUS FOR THE UTTERLY CONFUSED! I started out Clueless but ended with an All' Erika Dickstein8 0usihess school Student "As a non-traditional student one thing I have learned is the importance of material supplementary to texts. Especially in calculus it helps to have a second source, especially one as lucid and fun to read as CALCULUS FOR THE UTTERtY CONFUSED. Anyone, whether you are a math weenie or not, will get something out of this book. With this book, your chances of survival in the calculus jungle are greatly increased.'I Brad &3~ker,Physics Student Other books in the Utterly Conhrsed Series include: Financial Planning for the Utterly Confrcsed, Fifth Edition Job Hunting for the Utterly Confrcred Physics for the Utterly Confrred CALCULUS FOR THE UTTERLY CONFUSED Robert M. Oman Daniel M. Oman McGraw -Hill New York San Francisco Washington, D.C. Auckland Bogoth Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto Library of Congress Cataloging-in-Publication Data Oman, Robert M.
    [Show full text]
  • Weyl Spinors and the Helicity Formalism
    Weyl spinors and the helicity formalism J. L. D´ıazCruz, Bryan Larios, Oscar Meza Aldama, Jonathan Reyes P´erez Facultad de Ciencias F´ısico-Matem´aticas, Benem´erita Universidad Aut´onomade Puebla, Av. San Claudio y 18 Sur, C. U. 72570 Puebla, M´exico Abstract. In this work we give a review of the original formulation of the relativistic wave equation for parti- cles with spin one-half. Traditionally (`ala Dirac), it's proposed that the \square root" of the Klein-Gordon (K-G) equation involves a 4 component (Dirac) spinor and in the non-relativistic limit it can be written as 2 equations for two 2 component spinors. On the other hand, there exists Weyl's formalism, in which one works from the beginning with 2 component Weyl spinors, which are the fundamental objects of the helicity formalism. In this work we rederive Weyl's equations directly, starting from K-G equation. We also obtain the electromagnetic interaction through minimal coupling and we get the interaction with the magnetic moment. As an example of the use of that formalism, we calculate Compton scattering using the helicity methods. Keywords: Weyl spinors, helicity formalism, Compton scattering. PACS: 03.65.Pm; 11.80.Cr 1 Introduction One of the cornerstones of contemporary physics is quantum mechanics, thanks to which great advances in the comprehension of nature at the atomic, and even subatomic level have been achieved. On the other hand, its applications have given place to a whole new technological revolution. Thus, the study of quantum physics is part of our scientific culture.
    [Show full text]
  • Electroweak Symmetry Breaking (Historical Perspective)
    Electroweak Symmetry Breaking (Historical Perspective) 40th SLAC Summer Institute · 2012 History is not just a thing of the past! 2 Symmetry Indistinguishable before and after a transformation Unobservable quantity would vanish if symmetry held Disorder order = reduced symmetry 3 Symmetry Bilateral Translational, rotational, … Ornamental Crystals 4 Symmetry CsI Fullerene C60 ball and stick created from a PDB using Piotr Rotkiewicz's [http://www.pirx.com/iMol/ iMol]. {{gfdl}} Source: English Wikipedia, 5 Symmetry (continuous) 6 Symmetry matters. 7 8 Symmetries & conservation laws Spatial translation Momentum Time translation Energy Rotational invariance Angular momentum QM phase Charge 9 Symmetric laws need not imply symmetric outcomes. 10 symmetries of laws ⇏ symmetries of outcomes by Wilson Bentley, via NOAA Photo Library Photo via NOAA Wilson Bentley, by Studies among the Snow Crystals ... CrystalsStudies amongSnow the ... 11 Broken symmetry is interesting. 12 Two-dimensional Ising model of ferromagnet http://boudin.fnal.gov/applet/IsingPage.html 13 Continuum of degenerate vacua 14 Nambu–Goldstone bosons V Betsy Devine Yoichiro Nambu �� 2 Massless NG boson 1 Massive scalar boson NGBs as spin waves, phonons, pions, … Jeffrey Goldstone 15 Symmetries imply forces. I: scale symmetry to unify EM, gravity Hermann Weyl (1918, 1929) 16 NEW Complex phase in QM ORIGINAL Global: free particle Local: interactions 17 Maxwell’s equations; QED massless spin-1 photon coupled to conserved charge no impediment to electron mass (eL & eR have same charge) James Clerk Maxwell (1861/2) 18 19 QED Fermion masses allowed Gauge-boson masses forbidden Photon mass term 1 2 µ 2 mγ A Aµ violates gauge invariance: AµA (Aµ ∂µΛ) (A ∂ Λ) = AµA µ ⇥ − µ − µ ⇤ µ Massless photon predicted 22 observed: mγ 10− me 20 Symmetries imply forces.
    [Show full text]