Michael and Lily Atiyah Portrait Gallery of Mathematicians
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein. -
The Adams-Novikov Spectral Sequence for the Spheres
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 1, January 1971 THE ADAMS-NOVIKOV SPECTRAL SEQUENCE FOR THE SPHERES BY RAPHAEL ZAHLER1 Communicated by P. E. Thomas, June 17, 1970 The Adams spectral sequence has been an important tool in re search on the stable homotopy of the spheres. In this note we outline new information about a variant of the Adams sequence which was introduced by Novikov [7]. We develop simplified techniques of computation which allow us to discover vanishing lines and periodic ity near the edge of the E2-term, interesting elements in E^'*, and a counterexample to one of Novikov's conjectures. In this way we obtain independently the values of many low-dimensional stems up to group extension. The new methods stem from a deeper under standing of the Brown-Peterson cohomology theory, due largely to Quillen [8]; see also [4]. Details will appear elsewhere; or see [ll]. When p is odd, the p-primary part of the Novikov sequence be haves nicely in comparison with the ordinary Adams sequence. Com puting the £2-term seems to be as easy, and the Novikov sequence has many fewer nonzero differentials (in stems ^45, at least, if p = 3), and periodicity near the edge. The case p = 2 is sharply different. Computing E2 is more difficult. There are also hordes of nonzero dif ferentials dz, but they form a regular pattern, and no nonzero differ entials outside the pattern have been found. Thus the diagram of £4 ( =£oo in dimensions ^17) suggests a vanishing line for Ew much lower than that of £2 of the classical Adams spectral sequence [3]. -
Lecture Notes for Felix Klein Lectures
Preprint typeset in JHEP style - HYPER VERSION Lecture Notes for Felix Klein Lectures Gregory W. Moore Abstract: These are lecture notes for a series of talks at the Hausdorff Mathematical Institute, Bonn, Oct. 1-11, 2012 December 5, 2012 Contents 1. Prologue 7 2. Lecture 1, Monday Oct. 1: Introduction: (2,0) Theory and Physical Mathematics 7 2.1 Quantum Field Theory 8 2.1.1 Extended QFT, defects, and bordism categories 9 2.1.2 Traditional Wilsonian Viewpoint 12 2.2 Compactification, Low Energy Limit, and Reduction 13 2.3 Relations between theories 15 3. Background material on superconformal and super-Poincar´ealgebras 18 3.1 Why study these? 18 3.2 Poincar´eand conformal symmetry 18 3.3 Super-Poincar´ealgebras 19 3.4 Superconformal algebras 20 3.5 Six-dimensional superconformal algebras 21 3.5.1 Some group theory 21 3.5.2 The (2, 0) superconformal algebra SC(M1,5|32) 23 3.6 d = 6 (2, 0) super-Poincar´e SP(M1,5|16) and the central charge extensions 24 3.7 Compactification and preserved supersymmetries 25 3.7.1 Emergent symmetries 26 3.7.2 Partial Topological Twisting 26 3.7.3 Embedded Four-dimensional = 2 algebras and defects 28 N 3.8 Unitary Representations of the (2, 0) algebra 29 3.9 List of topological twists of the (2, 0) algebra 29 4. Four-dimensional BPS States and (primitive) Wall-Crossing 30 4.1 The d = 4, = 2 super-Poincar´ealgebra SP(M1,3|8). 30 N 4.2 BPS particle representations of four-dimensional = 2 superpoincar´eal- N gebras 31 4.2.1 Particle representations 31 4.2.2 The half-hypermultiplet 33 4.2.3 Long representations 34 -
Mothers in Science
The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond. -
Why U.S. Immigration Barriers Matter for the Global Advancement of Science
DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Ina Ganguli Patrick Gaulé Geoff Smith JANUARY 2021 DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Patrick Gaulé International Monetary Fund University of Bath and IZA Ina Ganguli Geoff Smith University of Massachusetts Amherst University of Bath JANUARY 2021 Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author. ISSN: 2365-9793 IZA – Institute of Labor Economics Schaumburg-Lippe-Straße 5–9 Phone: +49-228-3894-0 53113 Bonn, Germany Email: [email protected] www.iza.org IZA DP No. 14016 JANUARY 2021 ABSTRACT Why U.S. -
Twenty Female Mathematicians Hollis Williams
Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg ............................................................................................................................. -
A Short Survey of Cyclic Cohomology
Clay Mathematics Proceedings Volume 10, 2008 A Short Survey of Cyclic Cohomology Masoud Khalkhali Dedicated with admiration and affection to Alain Connes Abstract. This is a short survey of some aspects of Alain Connes’ contribu- tions to cyclic cohomology theory in the course of his work on noncommutative geometry over the past 30 years. Contents 1. Introduction 1 2. Cyclic cohomology 3 3. From K-homology to cyclic cohomology 10 4. Cyclic modules 13 5. Thelocalindexformulaandbeyond 16 6. Hopf cyclic cohomology 21 References 28 1. Introduction Cyclic cohomology was discovered by Alain Connes no later than 1981 and in fact it was announced in that year in a conference in Oberwolfach [5]. I have reproduced the text of his abstract below. As it appears in his report, one of arXiv:1008.1212v1 [math.OA] 6 Aug 2010 Connes’ main motivations to introduce cyclic cohomology theory came from index theory on foliated spaces. Let (V, ) be a compact foliated manifold and let V/ denote the space of leaves of (V, ).F This space, with its natural quotient topology,F is, in general, a highly singular spaceF and in noncommutative geometry one usually replaces the quotient space V/ with a noncommutative algebra A = C∗(V, ) called the foliation algebra of (V,F ). It is the convolution algebra of the holonomyF groupoid of the foliation and isF a C∗-algebra. It has a dense subalgebra = C∞(V, ) which plays the role of the algebra of smooth functions on V/ . LetA D be a transversallyF elliptic operator on (V, ). The analytic index of D, index(F D) F ∈ K0(A), is an element of the K-theory of A. -
Alexander Grothendieck: a Country Known Only by Name Pierre Cartier
Alexander Grothendieck: A Country Known Only by Name Pierre Cartier To the memory of Monique Cartier (1932–2007) This article originally appeared in Inference: International Review of Science, (inference-review.com), volume 1, issue 1, October 15, 2014), in both French and English. It was translated from French by the editors of Inference and is reprinted here with their permission. An earlier version and translation of this Cartier essay also appeared under the title “A Country of which Nothing is Known but the Name: Grothendieck and ‘Motives’,” in Leila Schneps, ed., Alexandre Grothendieck: A Mathematical Portrait (Somerville, MA: International Press, 2014), 269–88. Alexander Grothendieck died on November 19, 2014. The Notices is planning a memorial article for a future issue. here is no need to introduce Alexander deepening of the concept of a geometric point.1 Such Grothendieck to mathematicians: he is research may seem trifling, but the metaphysi- one of the great scientists of the twenti- cal stakes are considerable; the philosophical eth century. His personality should not problems it engenders are still far from solved. be confused with his reputation among In its ultimate form, this research, Grothendieck’s Tgossips, that of a man on the margin of society, proudest, revolved around the concept of a motive, who undertook the deliberate destruction of his or pattern, viewed as a beacon illuminating all the work, or at any rate the conscious destruction of incarnations of a given object through their various his own scientific school, even though it had been ephemeral cloaks. But this concept also represents enthusiastically accepted and developed by first- the point at which his incomplete work opened rank colleagues and disciples. -
Arxiv:1402.0409V1 [Math.HO]
THE PICARD SCHEME STEVEN L. KLEIMAN Abstract. This article introduces, informally, the substance and the spirit of Grothendieck’s theory of the Picard scheme, highlighting its elegant simplicity, natural generality, and ingenious originality against the larger historical record. 1. Introduction A scientific biography should be written in which we indicate the “flow” of mathematics ... discussing a certain aspect of Grothendieck’s work, indicating possible roots, then describing the leap Grothendieck made from those roots to general ideas, and finally setting forth the impact of those ideas. Frans Oort [60, p. 2] Alexander Grothendieck sketched his proof of the existence of the Picard scheme in his February 1962 Bourbaki talk. Then, in his May 1962 Bourbaki talk, he sketched his proofs of various general properties of the scheme. Shortly afterwards, these two talks were reprinted in [31], commonly known as FGA, along with his commentaries, which included statements of nine finiteness theorems that refine the single finiteness theorem in his May talk and answer several related questions. However, Grothendieck had already defined the Picard scheme, via the functor it represents, on pp.195-15,16 of his February 1960 Bourbaki talk. Furthermore, on p.212-01 of his February 1961 Bourbaki talk, he had announced that the scheme can be constructed by combining results on quotients sketched in that talk along with results on the Hilbert scheme to be sketched in his forthcoming May 1961 Bourbaki talk. Those three talks plus three earlier talks, which prepare the way, were also reprinted in [31]. arXiv:1402.0409v1 [math.HO] 3 Feb 2014 Moreover, Grothendieck noted in [31, p. -
Fall 2017 MATH 70330 “Intermediate Geometry and Topology” Pavel Mnev Detailed Plan. I. Characteristic Classes. (A) Fiber/Vec
Fall 2017 MATH 70330 \Intermediate Geometry and Topology" Pavel Mnev Detailed plan. I. Characteristic classes. (a) Fiber/vector/principal bundles. Examples. Connections, curvature. Rie- mannian case. Ref: [MT97]. (b) (2 classes.) Stiefel-Whitney, Chern and Pontryagin classes { properties, axiomatic definition. Classifying map and classifying bundle. RP 1; CP 1, infinite Grassmanians Gr(n; 1), CW structure, cohomology ring (univer- sal characteristic classes). Characteristic classes as obstructions (e.g. for embeddability of projective spaces). Euler class. Also: Chern character, splitting principle, Chern roots. Also: BG for a finite group/Lie group, group cohomology. Ref: [MS74]; also: [BT82, Hat98, LM98, May99]. (c) Chern-Weil homomorphism. Example: Chern-Gauss-Bonnet formula. Chern- Simons forms. Ref: Appendix C in [MS74]; [AM05, Dup78, MT97]. (d) Equivariant cohomology. Borel model (homotopy quotient), algebraic ver- sion { Cartan and Weil models. Ref: [GS99, Mei06, Tu13]. II. Bits of symplectic geometry. (a) Symplectic linear algebra, Lagrangian Grassmanian, Maslov class. Ref: [BW97, Ran, MS17]. (b) Symplectic manifolds, Darboux theorem (proof via Moser's trick). Dis- tinguished submanifolds (isotropic, coisotropic, Lagrangian). Examples. Constructions of Lagrangians in T ∗M (graph, conormal bundle). Ref: [DS00]. (c) Hamiltonian group actions, moment maps, symplectic reduction. Ref: [Jef] (lectures 2{4,7), [DS00]. (d) (Optional) Convexity theorem (Atyiah-Guillemin-Sternberg) for the mo- ment map of a Hamiltonian torus action. Toric varieties as symplectic re- ductions, their moment polytopes, Delzant's theorem. Ref: [Pra99, Sch], Part XI in [DS00], lectures 5,6 in [Jef]. (e) Localization theorems: Duistermaat-Heckman and Atiyah-Bott. Ref: [Mei06, Tu13], [Jef] (lecture 10). (f) (Optional) Classical field theory via Lagrangian correspondences. -
All That Math Portraits of Mathematicians As Young Researchers
Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. -
Annals of K-Theory Vol. 1 (2016)
ANNALSOF K-THEORY Paul Balmer Spencer Bloch vol. 1 no. 4 2016 Alain Connes Guillermo Cortiñas Eric Friedlander Max Karoubi Gennadi Kasparov Alexander Merkurjev Amnon Neeman Jonathan Rosenberg Marco Schlichting Andrei Suslin Vladimir Voevodsky Charles Weibel Guoliang Yu msp A JOURNAL OF THE K-THEORY FOUNDATION ANNALS OF K-THEORY msp.org/akt EDITORIAL BOARD Paul Balmer University of California, Los Angeles, USA [email protected] Spencer Bloch University of Chicago, USA [email protected] Alain Connes Collège de France; Institut des Hautes Études Scientifiques; Ohio State University [email protected] Guillermo Cortiñas Universidad de Buenos Aires and CONICET, Argentina [email protected] Eric Friedlander University of Southern California, USA [email protected] Max Karoubi Institut de Mathématiques de Jussieu – Paris Rive Gauche, France [email protected] Gennadi Kasparov Vanderbilt University, USA [email protected] Alexander Merkurjev University of California, Los Angeles, USA [email protected] Amnon Neeman amnon.Australian National University [email protected] Jonathan Rosenberg (Managing Editor) University of Maryland, USA [email protected] Marco Schlichting University of Warwick, UK [email protected] Andrei Suslin Northwestern University, USA [email protected] Vladimir Voevodsky Institute for Advanced Studies, USA [email protected] Charles Weibel (Managing Editor) Rutgers University, USA [email protected] Guoliang Yu Texas A&M University, USA [email protected] PRODUCTION Silvio Levy (Scientific Editor) [email protected] Annals of K-Theory is a journal of the K-Theory Foundation(ktheoryfoundation.org). The K-Theory Foundation acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in the launch of the Annals of K-Theory.