REDOX and ADDITION REACTIONS of BINARY FLUORIDES a Thesis Submitted to the University of Glasgow in Fulfilment of the Requiremen

Total Page:16

File Type:pdf, Size:1020Kb

REDOX and ADDITION REACTIONS of BINARY FLUORIDES a Thesis Submitted to the University of Glasgow in Fulfilment of the Requiremen REDOX AND ADDITION REACTIONS OF BINARY FLUORIDES A thesis submitted to the University of Glasgow in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY by JOHN ALBERT BERRY B.Sc, Department of Chemistry, University of Glasgow, GLASGOW, December. 1976. ProQuest Number: 13804100 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13804100 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 "There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact" Mark Twain "It is better to meet a mother bear robbed of her cubs than to meet some fool busy with a stupid project". Proverbs, 1£, 12 (Good News Bible) Acknowledgements I wish to express my sincere gratitude to my supervisors, Professor D.W.A, Sharp and Dr, J,M, Winfield for their help, encouragement and patience throughout this work, I should like to acknowledge the help and encourage­ ment I received from Dr, A, Prescott, especially with the work involving UF^ in CH^CN, I should also like to thank all my research student colleagues and the many members of staff who helped me, in particular Drs. R,T, Poole, I,D, MacLeod, Messrs. T, Boyle and 0,R, Chambers for helpful discussions, and Drs, R, ICeat, A,P, Lane and A,L, Porte for n,m.r,^laser Raman^and e.p.r, facilities respectively. The award of an S.R.C, Research Studentship is gratefully acknowledged. Abstract This thesis describes the study of complexation and redox reactions of iodine pentafluoride, and redox and addition reactions of uranium hexafluoride and rhenium hexafluoride# Solutions of IF,. in acetonitrile and pyridine were 1 19 studied using Raman, H and F n.m.r, spectroscopy. In CH^CN solution, the I-F»««I contacts which occur in liquid IF^, are replaced by C=N*»»I contacts as the concentration of CH^CN increases, A large decrease in the frequency of the v. band of IF-, and small increases in the C-C and C=N 1 5 stretching frequencies of CH^CN are observed in the Raman spectra. The results obtained suggest a maximum number of four CH-CN molecules can co-ordinate to each IF- A 1:1 3 5' complex is formed between IF,- and C^H^N and spectra of mixtures of the two liquids can best be explained in terms of an equilibrium between this complex and the two components. The solid 1:1 adduct, IF,-, 1 ,4-Dioxane was prepared and characterised by elemental analysis and 1 19 vibrational spectroscopy. Vibrational, and H and F n.m.r, spectra were recorded of its solutions in CH^CN, A polymeric structure for the adduct, based on a chain-structure is suggested. Reactions of IF- with metals and metal fluorides were 5 investigated, using IF,- or CH^CN as solvent. Thallium metal -f* reacts with IF^ to form insoluble T1 IF^ , which readily hydrolyses to give TIIOF^, Silver metal reacts with IF^ in CH^CN to give a viscous oil, whose spectra indicate that IF^~ is not formed. The reaction between copper and 1F,- in CH^CN gives a blue-white soluble solid whose composition is variable. The product from the reaction between mercury and IF,- is also of variable composition. Thallium (I) fluoride reacts with IF,- in CH^CN to give (Tl^^IF^"" as one product. These redox reactions all involve a 2-electron reduction of I(V) to I(III), but the reaction products depend on the stability of the I(III) species towards disproportionation# The products were identified by elemental analysis and vibrational spectroscopy. The addition reactions of IF^ with metal fluorides indicate that, in at least some instances, adduct formation is preferred to fluoride ion addition, T1F reacts with IF,- to produce either the soluble solid T1F.IF,- or the viscous liquid T1F,3IF^, The latter is formed if IF,. is present in a very large excess. reac^s in CH^CN forming the adduct CuF^,4CI1^CN.4IF^, This is a blue-green oil and 1 19 was characterised by elemental analysis, H and F n.m.r,, e,p,r,, electronic and vibrational spectroscopy, A structure based on these data is presented. Tungsten hexafluoride and molybdenum hexafluoride do not react with iodine in IF- but rhenium hexafluoride forms 5 a stable solution containing the I^ ion. This was confirmed by electronic and resonance Raman spectroscopy. No isolable product is formed. Uranium hexafluoride also forms a species containing , but a further reaction occurs and uranium pentafluoride is obtained as a pale green precipitate, UF^ is very soluble in CH^CN, with which it forms an isolable 1:1 adduct, and was characterised in the solid state by vibrational spectroscopy and in solution by Raman and electronic spectroscopy. Thallium, cadmium and copper metals are all readily oxidised by UF^ in CH^CN, forming soluble hexa- fluorouranates(V), These are isolable as the solvates T1(UF6)3.5CH3CN, Cd(UF6)2.5CU3CN and Cu(UF6)2.5CH CN, Electronic spectra obtained agree with the latest literature spectra. Values of vibrational frequencies obtained from vibronic couplings in electronic spectra agree well with the values from i.r. spectra. No silver compound could be isolated because of rapid solvent polymerisation caused by UF^ in the presence of Ag# UF^ is reduced by CH^CN to give UF^, while the solvent is slowly polymerised. The increase in concentration of UFt- with time is seen from Raman and electronic spectra, run at 30 minute intervals. attacks CH^CN too rapidly to allow reactions involving excess ReF^ to be carried out. However Cu(ReF6)2,4CH3CN.O,5IF5 was prepared using a mixture of IF- and CI10CN as solvent. 5 3 The reduction of UF^ by CH^CN to give UF^, interferes with relatively slow reactions such as F ion addition, HgF2 and UF6 in CI^CN give Hg(UF6)2,6CH3CN, and no U(Vl) species is isolated, ^u-^2 an(^ ^ 6 a mi-x^ure U(V) and U(VI) compounds and the equilibrium UF„2“ + UF^ -----* UF„~ + UF.~ o o x ( o is believed to exist in the reaction mixture, CuF^. 4CHo0N 4IFC behaves as a fluoride ion donor towards 2 ‘ 3 * 5 PFC and WF, in CH^CN The PF*"" ion was detected in solution 5 6 3 ' 6 by ^F, and ^ P I.N,D,0,R, n.m.r. spectroscopy, while WF^~ 1 9 was observed in both F n.m.r, and Raman spectra. However, the reactions between CuF0 4C1LCN 4IF_ and ReF^ and UI<V 2' 3 * 5 6 6 in IF,- are much less straightforward. The products were not completely characterised, but fluorido ion addition is at most only a side reaction. This may indicate that UF^ and ReF^ are poorer F acceptors than PF,- and WF^# Another explanation is that despite the F~ ion donor properties of CuF^,4CH^CN,4IF^ in CH^CN, it does not behave as such in IFC The co-ordinated CbLCN in CuF0 4CH0CN 4IFC 0 J 2 3 * 5 remains unattacked, despite high concentrations of ReF^ or UF^ and a long period of reaction. TABLE OF CONTENTS Page INTRODUCTION 1 CHAPTER ONE EXPERIMENTAL TECHNIQUES 48 CHAPTER TWO REACTIONS OP IODINE PENTAPLUORIDE 62 WITH ORGANIC BASES I Liquid Iodine Pentafluoride 65 II Iodine Pentafluoride and Acetonitrile 68 III Iodine Pentafluoride and 1,4-Dioxane 77 IY Iodine Pentafluoride and Pyridine 83 Experimental 92 CHAPTER THREE REACTIONS OF IODINE PENTAPLUORIDE 94 WITH METALS AND METAL FLUORIDES I Reaction of Thallium with IF_ 97 5 II Reaction of Thallium(l) Fluoride 101 with IFC j III Reaction of Thallium(l) Fluoride 102 with IF,- in the presence of CH^CN IV Reaction of Thallium(III) Fluoride 106 with IF,- in the presence of CH^CN V Reaction of Mercury with IF,- 106 VI Reaction of Silver with IFC 110 5 VII Reaction of Silver with IFC in the 110 5 presence of CII^CN VIII Reaction of Gold with IFC in the 112 5 presence of CH^CN IX Reaction of Copper with IF^ l12 X Reaction of Copper with IF,- in the 112 presence of IF,- Page XI Reaction of Copper(ll) Fluoride 115 with IF_ in the presence of CH-CN 5 1 3 Experimental 133 CHAPTER POUR REACTIONS OF METAL HEXAFLUORIDES 143 WITH IODINE IN IODINE PENTAFLUORIDE I Iodine in Iodine Pentafluoride with 144 Tungsten or Molybdenum Hexafluoride, II Iodine in Iodine Pentafluoride with 144 Rhenium Hexafluoride, III Iodine in Iodine Pentafluoride with 151 Uranium Hexafluoride IV Metal Hexafluorides with Bromine in 157 Iodine Pentafluoride Experimental 148 CHAPTER FIVE REDOX REACTIONS IN ACETONITRILE, 160 REACTIONS OF URANIUM AND RHENIUM HEXAFLUORIDES WITH METALS I Oxidation of Metals by Uranium 162 Hexafluoride in Acetonitrile II Reduction of Uranium Hexaflucride 174 by Acetonitrile III Oxidation of Copper by Rhenium 179 Hexafluoride Experimental 181 CHAPTER SIX FLUORIDE ION ADDITION REACTIONS, 185 REACTION OF COPPER(II) FLUORIDE WITH URANIUM HEXAFLUORIDE, AND COPPER(II) FLUORIDE TETRAKIS— (ACETONITRILE) TETRAKIS-(IODINE PENTAFLUORIDE) WITH PHOSPHORUS PENTAFLUORIDE, TUNGSTEN HEXAFLUORIDE, RHENIUM HEXAFLUORIDE AND URANIUM HEXAFLUORIDE, Page I Reaction of Copper(II) Fluoride 186 with Uranium Hexafluoride in Acetonitrile, II Reaction of Copper(ll) Pluoride 189 tetrakis-(Acetonitrile) tetrakis- (Iodine Pentafluoride) with Phosphorus Pentafluoride and Tungsten Hexafluoride in Acetonitrile and with Rhenium Hexafluoride in Iodine Pentafluoride Experimental 197 APPENDIX 201 REFERENCES 206 LIST OF TABLES AND FIGURES TABLE PAGE FIGURE PAGE 1 3 1 22 2 4 2 23 3 9 3 25 4 21 4 27 5 37 5 51 6 66 6 55 7 69 7 57 8 79 8 58 9 84 9 58 10 85 10 63 11 8T .
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Immediately Dangerous to Life Or Health (Idlh) Value Profile for Chlorine Pentafluoride [Cas No. 13637-63-3] and Bromine Pentafl
    External Review Draft March 2015 1 2 3 4 5 6 7 IMMEDIATELY DANGEROUS TO LIFE OR HEALTH (IDLH) VALUE PROFILE 8 9 10 11 FOR 12 13 14 15 CHLORINE PENTAFLUORIDE [CAS NO. 13637-63-3] 16 17 AND 18 19 BROMINE PENTAFLUORIDE [CAS NO. 7789-30-2] 20 21 22 23 24 25 26 Department of Health and Human Services 27 Centers for Disease Control and Prevention 28 National Institute for Occupational Safety and Health This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. i External Review Draft March 2015 1 DISCLAIMER 2 Mention of any company or product does not constitute endorsement by the National Institute for Occupational 3 Safety and Health (NIOSH). In addition, citations of Web sites external to NIOSH do not constitute NIOSH 4 endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not 5 responsible for the content of these Web sites. 6 7 ORDERING INFORMATION 8 This document is in the public domain and may be freely copied or reprinted. To receive NIOSH documents or 9 other information about occupational safety and health topics, contact NIOSH at 10 Telephone: 1-800-CDC-INFO (1-800-232-4636) 11 TTY: 1-888-232-6348 12 E-mail: [email protected] 13 14 or visit the NIOSH Web site at www.cdc.gov/niosh.
    [Show full text]
  • Assessment of Portable HAZMAT Sensors for First Responders
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S.
    [Show full text]
  • Safety Data Sheet According to 29CFR1910/1200 and GHS Rev
    Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3 Effective date : 01.06.2015 Page 1 of 7 Methylene Blue, Loeffler's SECTION 1 : Identification of the substance/mixture and of the supplier Product name : Methylene Blue, Loeffler's Manufacturer/Supplier Trade name: Manufacturer/Supplier Article number: S25432 Recommended uses of the product and uses restrictions on use: Manufacturer Details: AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331 Supplier Details: Fisher Science Education 15 Jet View Drive, Rochester, NY 14624 Emergency telephone number: Fisher Science Education Emergency Telephone No.: 800-535-5053 SECTION 2 : Hazards identification Classification of the substance or mixture: Flammable Flammable solids, category 2 Flammable liq. 2 Signal word :Danger Hazard statements: Highly flammable liquid and vapour Precautionary statements: If medical advice is needed, have product container or label at hand Keep out of reach of children Read label before use Keep away from heat/sparks/open flames/hot surfaces. No smoking Keep container tightly closed Ground/bond container and receiving equipment Use explosion-proof electrical/ventilating/light/…/equipment Use only non-sparking tools Take precautionary measures against static discharge Wear protective gloves/protective clothing/eye protection/face protection IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower In case of fire: Use … for extinction Store in a well ventilated place. Keep cool Dispose of contents/container to … Other Non-GHS Classification: WHMIS Created by Global Safety Management, Inc. -Tel: 1-813-435-5161 - www.gsmsds.com Safety Data Sheet according to 29CFR1910/1200 and GHS Rev.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Naming Molecular Compounds General Instructions: Please Do the Activities for Each Day As Indicated
    Teacher Name: Dwight Lillie Student Name: ________________________ Class: ELL Chemistry Period: Per 4 Assignment: Assignment week 2 Due: Friday, 5/8 Naming Molecular Compounds General Instructions: Please do the activities for each day as indicated. Any additional paper needed please attach. Submitted Work: 1) Completed packet. Questions: Please send email to your instructor and/or attend published virtual office hours. Schedule: Date Activity Monday (4/27) Read Sections 9.3, 9.5 in your textbook. Tuesday (4/28) Read and work through questions 1-9 Wednesday (4/29) Read and work through questions 10-14 Thursday (4/30) Read and work through questions 14-18 Friday (5/31) Read and work through questions 19-21 How are the chemical formula and name of a molecular compound related? Why? When you began chemistry class this year, you probably already knew that the chemical formula for carbon dioxide was CO2. Today you will find out why CO2 is named that way. Naming chemical compounds correctly is of paramount importance. The slight difference between the names carbon monoxide (CO, a poisonous, deadly gas) and carbon dioxide (CO2, a greenhouse gas that we exhale when we breathe out) can be the difference between life and death! In this activity you will learn the naming system for molecular compounds. Model 1 – Molecular Compounds Molecular Number of Atoms Number of Atoms in Name of Compound Formula of First Element Second Element ClF Chlorine monofluoride ClF5 1 5 Chlorine pentafluoride CO Carbon monoxide CO2 Carbon dioxide Cl2O Dichlorine monoxide PCl5 Phosphorus pentachloride N2O5 Dinitrogen pentoxide 1. Fill in the table to indicate the number of atoms of each type in the molecular formula.
    [Show full text]
  • Website ( Or in Your Facility’S RTK Other Effects Central File Or Hazard Communication Standard File
    Right to Know Hazardous Substance Fact Sheet Common Name: BROMINE PENTAFLUORIDE Synonyms: None CAS Number: 7789-30-2 Chemical Name: Bromine Fluoride RTK Substance Number: 0254 Date: July 1998 Revision: November 2007 DOT Number: UN 1745 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Bromine Pentafluoride is a colorless to pale yellow liquid with Hazard Summary o a strong odor. It becomes a gas at temperatures above 104 F Hazard Rating NJDOH NFPA o (40 C). It is used as an oxidizer and a fluorinating agent in HEALTH - 4 making Fluorocarbons. FLAMMABILITY - 0 REACTIVITY - 3 W WATER REACTIVE CORROSIVE STRONG OXIDIZER Reasons for Citation POISONOUS GASES ARE PRODUCED IN FIRE f Bromine Pentafluoride is on the Right to Know Hazardous CONTAINERS MAY EXPLODE IN FIRE Substance List because it is cited by ACGIH, DOT, NIOSH and NFPA. Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe f This chemical is on the Special Health Hazard Substance List. f Bromine Pentafluoride can affect you when inhaled. f Contact can severely irritate and burn the skin and eyes. f Inhaling Bromine Pentafluoride can irritate the nose and throat. SEE GLOSSARY ON PAGE 5. f Inhaling Bromine Pentafluoride can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs FIRST AID (pulmonary edema), a medical emergency. f Eye Contact Repeated exposure can cause headache, dizziness, nausea f Immediately flush with large amounts of water for at least 30 and vomiting. minutes, lifting upper and lower lids. Remove contact f Bromine Pentafluoride is not combustible but it is a lenses, if worn, while flushing.
    [Show full text]
  • Interhalogen Compounds
    INTERHALOGEN COMPOUNDS Smt. EDNA RICHARD Asst. Professor Department of Chemistry INTERHALOGEN COMPOUND An interhalogen compound is a molecule which contains two or more different halogen atoms (fluorine, chlorine, bromine, iodine, or astatine) and no atoms of elements from any other group. Most interhalogen compounds known are binary (composed of only two distinct elements) The common interhalogen compounds include Chlorine monofluoride, bromine trifluoride, iodine pentafluoride, iodine heptafluoride, etc Interhalogen compounds into four types, depending on the number of atoms in the particle. They are as follows: XY XY3 XY5 XY7 X is the bigger (or) less electronegative halogen. Y represents the smaller (or) more electronegative halogen. Properties of Interhalogen Compounds •We can find Interhalogen compounds in vapour, solid or fluid state. • A lot of these compounds are unstable solids or fluids at 298K. A few other compounds are gases as well. As an example, chlorine monofluoride is a gas. On the other hand, bromine trifluoride and iodine trifluoride are solid and liquid respectively. •These compounds are covalent in nature. •These interhalogen compounds are diamagnetic in nature. This is because they have bond pairs and lone pairs. •Interhalogen compounds are very reactive. One exception to this is fluorine. This is because the A-X bond in interhalogens is much weaker than the X-X bond in halogens, except for the F-F bond. •We can use the VSEPR theory to explain the unique structure of these interhalogens. In chlorine trifluoride, the central atom is that of chlorine. It has seven electrons in its outermost valence shell. Three of these electrons form three bond pairs with three fluorine molecules leaving four electrons.
    [Show full text]
  • Crystal Structure Transformations in Binary Halides
    1 A UNITED STATES DEPARTMENT OF A111D3 074^50 IMMERCE JBLICAT10N NSRDS—NBS 41 HT°r /V\t Co^ NSRDS r #C£ DM* ' Crystal Structure Transformations in Binary Halides u.s. ARTMENT OF COMMERCE National Bureau of -QC*-| 100 US73 ho . 4 1^ 72. NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation’s physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3—Laboratory Astrophysics 3—Cryo- 3 genics .
    [Show full text]
  • MIAMI UNIVERSITY the Graduate School Certificate for Approving The
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Craig Anthony Damin Candidate for the Degree: Doctor of Philosophy ________________________________________ André J. Sommer, Advisor ________________________________________ Neil D. Danielson, Committee Chair ________________________________________ Jonathan P. Scaffidi, Reader ________________________________________ David C. Oertel, Reader ________________________________________ Lei L. Kerr, Graduate School Representative ABSTRACT INSTRUMENT DEVELOPMENT AND APPLICATION FOR QUALITATIVE AND QUANTITATIVE SAMPLE ANALYSES USING INFRARED AND RAMAN SPECTROSCOPIES by Craig Anthony Damin This dissertation describes the development and application of methods and instrumentation for qualitative and quantitative sample analyses by infrared and Raman spectroscopies. An introduction to the concepts and methods utilized is provided in Chapter 1. A comparative evaluation of solid-core silver halide fiber optics and hollow silica waveguides was performed on the basis of the transmission of mid-infrared radiation using a fiber optic coupling accessory and an infrared microscope is presented in Chapter 2. Increased transmission was reproducibly observed between two identical hollow waveguides due to minimization of insertion and scattering losses resulting from the hollow core. Chapter 3 presents an evaluation of a mid-infrared, attenuated total (internal) reflection (ATR) probe accessory utilizing hollow waveguides based on transmission and signal-to-noise. Quantitative analyses of aqueous succinylcholine chloride and ethanol solutions were also performed. An in situ Raman study of nitrogen incorporation in thin films of zinc oxide using a temperature-controlled reaction cell is discussed in Chapter 4. Monitoring nitrogen incorporation in thin films of zinc oxide at elevated temperatures in the presence of nitrogen-containing precursor reagents proved inconclusive using the proposed method.
    [Show full text]