MIAMI UNIVERSITY the Graduate School Certificate for Approving The
Total Page:16
File Type:pdf, Size:1020Kb
MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Craig Anthony Damin Candidate for the Degree: Doctor of Philosophy ________________________________________ André J. Sommer, Advisor ________________________________________ Neil D. Danielson, Committee Chair ________________________________________ Jonathan P. Scaffidi, Reader ________________________________________ David C. Oertel, Reader ________________________________________ Lei L. Kerr, Graduate School Representative ABSTRACT INSTRUMENT DEVELOPMENT AND APPLICATION FOR QUALITATIVE AND QUANTITATIVE SAMPLE ANALYSES USING INFRARED AND RAMAN SPECTROSCOPIES by Craig Anthony Damin This dissertation describes the development and application of methods and instrumentation for qualitative and quantitative sample analyses by infrared and Raman spectroscopies. An introduction to the concepts and methods utilized is provided in Chapter 1. A comparative evaluation of solid-core silver halide fiber optics and hollow silica waveguides was performed on the basis of the transmission of mid-infrared radiation using a fiber optic coupling accessory and an infrared microscope is presented in Chapter 2. Increased transmission was reproducibly observed between two identical hollow waveguides due to minimization of insertion and scattering losses resulting from the hollow core. Chapter 3 presents an evaluation of a mid-infrared, attenuated total (internal) reflection (ATR) probe accessory utilizing hollow waveguides based on transmission and signal-to-noise. Quantitative analyses of aqueous succinylcholine chloride and ethanol solutions were also performed. An in situ Raman study of nitrogen incorporation in thin films of zinc oxide using a temperature-controlled reaction cell is discussed in Chapter 4. Monitoring nitrogen incorporation in thin films of zinc oxide at elevated temperatures in the presence of nitrogen-containing precursor reagents proved inconclusive using the proposed method. Chapter 5 presents an evaluation of dispersive and Fourier transform (FT-) Raman spectroscopies for on-line process control in the bottling industry. FT-Raman was determined to be more applicable for on-line determinations of poly(ethylene terephthalate) bottle thickness due to the availabilities of such benefits as increased laser power and fluorescence rejection. Preliminary data from the development of an inverted ATR imaging microscope are discussed in Chapter 6. The inverted optical design of the microscope permits simultaneous viewing of the sample with white light and the collection of infrared spectral images. Summaries of the presented research are provided in Chapter 7. INSTRUMENT DEVELOPMENT AND APPLICATION FOR QUALITATIVE AND QUANTITATIVE SAMPLE ANALYSES USING INFRARED AND RAMAN SPECTROSCOPIES A DISSERTATION Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry by Craig Anthony Damin Miami University Oxford, Ohio 2013 Dissertation Director: André J. Sommer © Craig A. Damin 2013 Table of Contents Chapter 1. Introduction 1.1 Infrared Spectroscopy ............................................................................................................... 2 1.1.1 History of Infrared Spectroscopy ....................................................................................... 2 1.2 Fourier Transform Infrared (FT-IR) Spectroscopy ................................................................... 3 1.2.1 Instrumentation .................................................................................................................. 3 1.2.2 Advantages of FT-IR Spectroscopy ................................................................................... 5 1.3 Infrared Sampling Methods ...................................................................................................... 6 1.3.1 Transmission ...................................................................................................................... 7 1.3.2 Reflectance ......................................................................................................................... 7 1.3.3 Attenuated Total Internal Reflection ................................................................................. 8 1.4 Quantitative Analysis by Infrared Spectroscopy ...................................................................... 9 1.5 Infrared Fiber Optics and Waveguides ................................................................................... 10 1.5.1 Crystalline Infrared Fibers ............................................................................................... 10 1.5.1.1 Polycrystalline Infrared Fibers .................................................................................. 11 1.5.2 Hollow Waveguides ......................................................................................................... 12 1.5.2.1 Hollow Glass Waveguide ......................................................................................... 13 1.6 Near-Infrared Spectroscopy .................................................................................................... 14 1.7 Raman Spectroscopy ............................................................................................................... 14 1.7.1 Dispersive Raman Spectroscopy...................................................................................... 15 1.7.2 Fourier Transform (FT-) Raman Spectroscopy ............................................................... 16 1.8 Raman Microspectroscopy ...................................................................................................... 17 1.9 Thermogravimetric Analysis .................................................................................................. 19 1.10 Infrared Microspectroscopy .................................................................................................. 20 1.10.1 History of Infrared Microspectroscopy .......................................................................... 20 1.10.2 Instrumentation .............................................................................................................. 21 1.11 Infrared Microspectroscopic Imaging ................................................................................... 24 1.11.1 History of Infrared Imaging ........................................................................................... 24 1.11.2 Advantages of Infrared Imaging Using a Focal Plane Array ......................................... 26 iii 1.11.3 ATR-FT-IR Microspectroscopic Imaging ..................................................................... 26 1.12 Dissertation Goals and Specific Aims .................................................................................. 28 References ..................................................................................................................................... 30 Chapter 2. Characterization of Silver Halide Fiber Optics and Hollow Silica Waveguides for Use in the Construction of a Mid-Infrared Attenuated Total Reflection-Fourier Transform Infrared (ATR-FT-IR) Spectroscopy Probe 2.1 Abstract ................................................................................................................................... 45 2.2 Introduction ............................................................................................................................. 46 2.2.1 Infrared Fiber Optics ........................................................................................................ 46 2.2.2 Hollow Waveguides ......................................................................................................... 48 2.3 Goals and Specific Aims ......................................................................................................... 49 2.4 Experimental ........................................................................................................................... 49 2.4.1 Materials .......................................................................................................................... 49 2.4.2 Instrumentation ................................................................................................................ 50 2.4.3 Methods............................................................................................................................ 52 2.5 Results and Discussion ........................................................................................................... 53 2.5.1 Harrick FiberMate2 .......................................................................................................... 53 2.5.2 Spectra-Tech IR-PLAN Infrared Microscope .................................................................. 55 2.5.3 Single-beam Spectra ........................................................................................................ 61 2.5.4 Effect of Bending ............................................................................................................. 64 2.6 Conclusions ............................................................................................................................. 68 2.7 Acknowledgements ................................................................................................................. 68 References ....................................................................................................................................