Lawrence Berkeley National Laboratory Recent Work
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Densifying Metal Hydrides with High Temperature and Pressure
3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C. -
Thèse En Co-Tutelle
UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENNE ÉCOLE DOCTORALE SCIENCES FONDAMENTALES - SANTÉ N619 FACULTÉ DES SCIENCES DE TUNIS (FST) ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE, SCIENCES ET TECHNOLOGIES DES MATÉRIAUX THÈSE EN CO-TUTELLE Pour obtenir le grade de Docteur de l’Université de Reims Champagne-Ardenne Discipline : Physique Spécialité : Physique moléculaire ET Docteur de la Faculté des Sciences de Tunis Discipline : Physique Présentée et soutenue publiquement par Olfa FERCHICHI Le 28 Septembre 2020 Étude des propriétés structurales et spectroscopiques de peroxydes aux niveaux DFT et ab initio JURY Manef ABDERRABBA Professeur à l’Université de Carthage Rapporteur Jean Christophe TREMBLAY Professeur à l’Université de Lorraine Rapporteur et Président du Jury Halima MOUHIB Maître de conférences à l’Université Gustave EiUel Examinatrice Hassen GHALILA Professeur à l’Université de Tunis El Manar Examinateur Alexander ALIJAH Professeur à l’Université de Reims Directeur de thèse Najoua DERBEL Professeur à la Faculté des Sciences de Bizerte Directrice de thèse Thibaud COURS Maître de conférences à l’Université de Reims Membre invité Dédicaces Je dédie cette thèse : À mes très chers parents Mohammed et Latifa, Loin de vous, votre soutien et votre encouragement m'ont toujours donné de la force pour persévérer et pour prospérer dans la vie. À mes sœurs et mon frère, Je vous remercie énormément pour tous les efforts que vous avez fait pour moi et les soutiens moraux dont j’ai pu bénéficier. À mon cher mari Johan TARAPEY Merci pour tes encouragements, tu as toujours su trouver les mots qui conviennent pour me remonter la morale dans les moments pénibles, grâce à toi j’ai pu surmonter toutes les difficultés. -
Group 17 (Halogens)
Sodium, Na Gallium, Ga CHEMISTRY 1000 Topic #2: The Chemical Alphabet Fall 2020 Dr. Susan Findlay See Exercises 11.1 to 11.4 Forms of Carbon The Halogens (Group 17) What is a halogen? Any element in Group 17 (the only group containing Cl2 solids, liquids and gases at room temperature) Exists as diatomic molecules ( , , , ) Melting Boiling 2State2 2 2Density Point Point (at 20 °C) (at 20 °C) Fluorine -220 °C -188 °C Gas 0.0017 g/cm3 Chlorine -101 °C -34 °C Gas 0.0032 g/cm3 Br2 Bromine -7.25 °C 58.8 °C Liquid 3.123 g/cm3 Iodine 114 °C 185 °C Solid 4.93 g/cm3 A nonmetal I2 Volatile (evaporates easily) with corrosive fumes Does not occur in nature as a pure element. Electronegative; , and are strong acids; is one of the stronger weak acids 2 The Halogens (Group 17) What is a halogen? Only forms one monoatomic anion (-1) and no free cations Has seven valence electrons (valence electron configuration . ) and a large electron affinity 2 5 A good oxidizing agent (good at gaining electrons so that other elements can be oxidized) First Ionization Electron Affinity Standard Reduction Energy (kJ/mol) Potential (kJ/mol) (V = J/C) Fluorine 1681 328.0 +2.866 Chlorine 1251 349.0 +1.358 Bromine 1140 324.6 +1.065 Iodine 1008 295.2 +0.535 3 The Halogens (Group 17) Fluorine, chlorine and bromine are strong enough oxidizing agents that they can oxidize the oxygen in water! When fluorine is bubbled through water, hydrogen fluoride and oxygen gas are produced. -
Communications to the Editor 6499
Communications to the Editor 6499 Nbenzyloxycarbonyl benzyl ester 7. 368 (1971). (17) D. M. Brunwin and G. Lowe, J. Chem. SOC., Perkin Trans. 1, 1321 (34) Computer programs used for these calculations were the X-ray 1972 (1973). system, Technical Report TR-192, Computer Science Center, University (18) R. B. Woodward, "Recent Advances in the Chemistry of p-Lactam Anti- of Maryland, College Park, Md. biotics", Chem. SOC., Spec. Pub/., NO. 28, 167-180 (1977). (35) C. K. Johnson, ORTEP, Oak Ridge National Laboratory, Report ORNL- (19) D. B. Bryan, R. F. Hall, K. G. Holden, W. F. Huffman, and J. G. Gleason, J. 3794. Am. Chem. SOC., 99,2353 (1977). (36) R. M. Sweet in "Cephalosporins and Penicillins", E. H. Flynn, Ed.. Academic (20)T. W. Doyle, J. L. Dowlas, B. Beleau. J. Mennier. and B. Luh. Can. J. Chem., Press, New York, N.Y., 1972, p. 297. 55, 2873 (1977). - (37) X-ray data from H. E. Applegate, J. E. Dolfini, M. S.Puar, W. A. Slusarchyk. (21) F DiNinno. T. R. Beattie, and B. G. Christensen, J. Org. Chem, 42, 1960 and B. Toeplitz, J. Org. Chem., 39, 2794 (1974). (19771\.- ,. (38) Nonfused 4-thioazetidin-2-one intermediates in the synthesis of 6P-ac- (22) Related reductions in penicillin derivatives give predominantly Cis-sJDsli- ylaminopenem esters, e.g., 4~-acetylthio-3P-phenoxyacetylaminoazeti- tded products: J. C. Sheehan and Y. S. Lo, J. Org. Chem., 38, 3227 (19731; din-2-one or terf-butyl 2-(4@-acetyithio-2-oxo-3~-phenoxyacetylamino- F. DiNinno, unpublisned resdts. l-azetidinyl)-2-hydroxyacetate in CH~CIP,show the p-lactam band at 1782 (23) K. -
United States Patent 0 " Ice Patented May 28, 1968
3,385,666 United States Patent 0 " ice Patented May 28, 1968 1 2 of novel compositions that can be used as a source of 3,385,666 both ozone and oxygen. DIOXYGENYL FLUORIDES OF GROUP V An additional object of this invention is the preparation ELEMENTS of the nitronium ion and intermediates for preparing Archie R. Young II, Montclair, Tetsuyuki Hirata, Whar novel nitronium salts. ton, and Scott I. Morrow, Morris Plains, N.J., assign Further objects of this invention will become apparent ors to Thiokol Chemical Corporation, Bristol, Pa., a corporation of Delaware to the reader upon a further reading of this patent appli No Drawing. Filed Jan. 6, 1964, Ser. No. 336,061 cation. 11 Claims. (Cl. 23-203) The above objects among many others are achieved by 10 the direct interaction of certain ?uoride reactants with This invention relates to a novel class of ?uorinated, dioxygen di?uoride at reaction temperatures well below oxygen containing, oxidizing agents and to a process for 0° C. As indicated earlier the ?uoride reactant is selected their preparation. from the group consisting of Group V ?uorides. More particularly, this invention concerns the prepara The preferred practice is to contact the ?uoride reactant tion of certain stable ?uorides of the cationic dioxygenyl 15 with an excess of 02112 at low temperatures ranging from radical. These novel-oxidizing agents have the formula: —l60 to \—78° C. until a substantial amount of prod uct is formed. The product is isolated after evacuating off the excess 021:2, ?uorine and gaseous by-products. wherein (O2) is the dioxygenyl radical having a charge In one ‘favored process embodiment of this invention of +1, M is an element selected from the group consist 20 a ?uoride reactant chosen ‘from the preferred phosphorus, ing of phosphorus, arsenic antimony and bismuth. -
Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I by V
Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I By V. Vill, C. Bauhofer, G. Peters, H. Sajus, P. Weigner, LCI-Publisher and Chemistry Department of the University of Hamburg All printed index material has been used to build up the comprehensive Scidex database index developed by LCI Publisher GmbH, Hamburg For further information please visit www.lci-publisher.com From this database a CD-ROM and two online versions were derived. The first is attached to each of the printed subvolumes and the latter are offered for free use at the following addresses: Scidex Database online with graphical structure search on http://lb.chemie.uni-hamburg.de/ Or the easy to use html version on http://lb.chemie.uni-hamburg.de/static/ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Index of Organic Compounds Subvolume A Compounds with 1 to 7 Carbon Atoms Editor: V. Vill Authors: V. Vill, G. Peters, H. Sajus 1 3 ISBN 3-540-66203-0 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Index of Organic Compounds A: Editor: V. Vill At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. -
China and Weapons of Mass Destruction: Implications for the United States
China and Weapons of Mass Destruction: Implications for the United States China and Weapons of Mass Destruction: Implications for the United States 5 November 1999 This conference was sponsored by the National Intelligence Council and Federal Research Division. The views expressed in this report are those of individuals and do not represent official US intelligence or policy positions. The NIC routinely sponsors such unclassified conferences with outside experts to gain knowledge and insight to sharpen the level of debate on critical issues. Introduction | Schedule | Papers | Appendix I | Appendix II | Appendix III | Appendix IV Introduction This conference document includes papers produced by distinguished experts on China's weapons-of-mass-destruction (WMD) programs. The seven papers were complemented by commentaries and general discussions among the 40 specialists at the proceedings. The main topics of discussion included: ● The development of China's nuclear forces. ● China's development of chemical and biological weapons. ● China's involvement in the proliferation of WMD. ● China's development of missile delivery systems. ● The implications of these developments for the United States. Interest in China's WMD stems in part from its international agreements and obligations. China is a party to the International Atomic Energy Agency (IAEA), the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), the Zangger Committee, and the Chemical Weapons Convention (CWC) and has signed but not ratified the Comprehensive Nuclear Test Ban Treaty (CTBT). China is not a member of the Australia Group, the Wassenaar Arrangement, the Nuclear Suppliers Group, or the Missile Technology Control Regime (MTCR), although it has agreed to abide by the latter (which is not an international agreement and lacks legal authority). -
Chemical Chemical Hazard and Compatibility Information
Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9505198 T h e 1 /1 1 band of cyanuric fluoride and the A *11 - X *E+ transition of aluminum monobromide Fleming, Patrick E., Ph.D. -
H2CS) and Its Thiohydroxycarbene Isomer (HCSH
A chemical dynamics study on the gas phase formation of thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH) Srinivas Doddipatlaa, Chao Hea, Ralf I. Kaisera,1, Yuheng Luoa, Rui Suna,1, Galiya R. Galimovab, Alexander M. Mebelb,1, and Tom J. Millarc,1 aDepartment of Chemistry, University of Hawai’iatManoa, Honolulu, HI 96822; bDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; and cSchool of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom Edited by Stephen J. Benkovic, The Pennsylvania State University, University Park, PA, and approved August 4, 2020 (received for review March 13, 2020) Complex organosulfur molecules are ubiquitous in interstellar molecular sulfur dioxide (SO2) (21) and sulfur (S8) (22). The second phase clouds, but their fundamental formation mechanisms have remained commences with the formation of the central protostars. Tempera- largely elusive. These processes are of critical importance in initiating a tures increase up to 300 K, and sublimation of the (sulfur-bearing) series of elementary chemical reactions, leading eventually to organo- molecules from the grains takes over (20). The subsequent gas-phase sulfur molecules—among them potential precursors to iron-sulfide chemistry exploits complex reaction networks of ion–molecule and grains and to astrobiologically important molecules, such as the amino neutral–neutral reactions (17) with models postulating that the very acid cysteine. Here, we reveal through laboratory experiments, first sulfur–carbon bonds are formed via reactions involving methyl electronic-structure theory, quasi-classical trajectory studies, and astro- radicals (CH3)andcarbene(CH2) with atomic sulfur (S) leading to chemical modeling that the organosulfur chemistry can be initiated in carbonyl monosulfide and thioformaldehyde, respectively (18). -
Standard Thermodynamic Properties of Chemical
STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate -
Durham E-Theses
Durham E-Theses Methtleneamino-derivatives of some transition metal carbonyls Midcalf, Christopher How to cite: Midcalf, Christopher (1971) Methtleneamino-derivatives of some transition metal carbonyls, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8649/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk METHYLENEAMINO- DERTVATIVE S OF SOME TRANSITION METAL CARBONYLS by Christopher Midcalf, B.Sc. A thesis submitted to the University of Durham for the degree of Doctor of Philosophy July 1971 MEMORANDUM The work described in this thesis was carried out in the University of Durham between October 1968 and July 1971. It has not been submitted for any other degree and is the original work of the author except when acknowledged by reference. Part of the work in this thesis has formed the subject matter of the following publications: (i) Unsaturated Organonitrogen Groups in Carbonyl Complexes of Molybdenum, Tungsten and Manganese.