The Significance of Reduced Functional

Total Page:16

File Type:pdf, Size:1020Kb

The Significance of Reduced Functional Paleobiology, 31(2), 2005, pp. 324±346 To replace or not to replace: the signi®cance of reduced functional tooth replacement in marsupial and placental mammals Alexander F. H. van Nievelt and Kathleen K. Smith Abstract.ÐMarsupial mammals are characterized by a pattern of dental replacement thought to be unique. The apparent primitive therian pattern is two functional generations of teeth at the incisor, canine, and premolar loci, and a series of molar teeth, which by de®nition are never replaced. In marsupials, the incisor, canine, and ®rst and second premolar positions possess only a single func- tional generation. Recently this pattern of dental development has been hypothesized to be a syn- apomorphy of metatherians, and has been used to diagnose taxa in the fossil record. Further, the suppression of the ®rst generation of teeth has been linked to the marsupial mode of reproduction, through the mechanical suppression of odontogenesis during the period of ®xation of marsupials, and has been used to reconstruct the mode of reproduction of fossil organisms. Here we show that dental development occurs throughout the period of ®xation; therefore, the hypothesis that odon- togenesis is mechanically suppressed during this period is refuted. Further, we present compar- ative data on dental replacement in eutherians and demonstrate that suppression of tooth replace- ment is fairly common in diverse groups of placental mammals. We conclude that reproductive mode is neither a necessary nor a suf®cient explanation for the loss of tooth replacement in mar- supials. We explore possible alternative explanations for the loss of replacement in therians, but we argue that no single hypothesis is adequate to explain the full range of observed patterns. Alexander F. H. van Nievelt.* Department of Biological Anthropology and Anatomy, Box 90383, Duke University, Durham, North Carolina 27708 Kathleen K. Smith. Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708. E-mail: [email protected] *Present address: Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708. E-mail: [email protected] Accepted: 28 June 2004 Introduction pials reveals that vestigial ®rst generation (``milk'') incisors and canines are found in Tooth replacement in marsupial mammals several marsupial families, including Macro- differs from the condition generally believed podidae (in Macropus giganteus Kirkpatrick to characterize eutherian mammals. In euthe- 1978), Dasyuridae (in Dasyurus quoll Luckett rian mammals, there are typically two gener- 1989, and Sminthopsis virginiae Luckett and ations of incisors, canines, and most (or all) Woolley 1996), and Peramelidae (in Perameles premolars. In contrast, marsupials typically Wilson and Hill 1897). Thus far, most detailed have two generations of functional teeth at studies of dental development of didelphids, only one locus in each jaw quadrant, the last generally considered to have the most primi- premolar (P3) (®rst noted by Flower [1867]). tive dentition of extant marsupials, have Some derived dasyurids have eliminated re- failed to document incontrovertible evidence placement altogether. By de®nition, molar of a vestigial ®rst tooth generation. These teeth are represented by only a single gener- studies include several of Didelphis (KuÈ kenthal ation in both clades. Studies of dental replace- 1891; RoÈse 1892; Berkovitz 1978). However, ment in dryolestid eupantotheres (Martin Kozawa et al. (1998) claimed that Monodelphis 1997), a Mesozoic taxon that represents an domestica has a much more complex set of suc- outgroup to the Theria (Metatheria 1 Euthe- cessional homologies, with vestigial ®rst gen- ria), show that the pattern commonly seen in eration incisors at two loci and vestigial sec- living eutherians is the primitive one. ond generation teeth at three. Our own studies Close examination of the development of of a more complete series of M. domestica the anterior dentition in a variety of marsu- found no evidence for vestigial teeth. The ves- q 2005 The Paleontological Society. All rights reserved. 0094-8373/05/3102-0009/$1.00 REDUCED TOOTH REPLACEMENT IN MAMMALS 325 tigial anterior teeth seen in the Australian felli et al. (1996) argued that the marsupial families are interpreted as evidence for the tooth replacement pattern is of great antiquity loss of a ®rst generation of functional anterior and is found in some of the earliest marsupi- teeth present in the ancestry of marsupials. als. Cifelli and Muizon (1998) provide further Thus, relative to the primitive therian condi- evidence of the early appearance of the mar- tion, marsupials have a distinctive, derived supial dental replacement pattern in Creta- pattern of reduced dental replacement. ceous and Paleocene marsupials. They de- Several workers have tied this derived pat- scribed juvenile specimens of ®ve marsupial tern of dental replacement to the marsupial species from the Paleocene of South America mode of reproduction and development. Wil- and found no evidence for tooth replacement son and Hill (1897: p. 554) stated, ``We believe anterior to the last premolar locus. They con- that we are justi®ed in seeking for the cause of cluded that ``(t)he pattern of postcanine erup- the almost total suppression of the milk-teeth tion and replacement in the fossils is remark- in front of the last premolar, in the modi®ed ably similar to that of recent didelphids'' (Ci- condition of the mouth in the marsupial felli and Muizon 1998: p. 218). Furthermore, young in consequence of its peculiar adapta- they emphasized the systematic signi®cance tion to the sucking function.'' Winge (1941) of that pattern: ``Given the problematic nature came to a similar conclusion, as did Ziegler of most dental and even basicranial features (1971b: p. 240) who stated, ``The selective fac- de®ning Marsupialia (Muizon 1994), we sug- tors contributing to the suppression of the gest that the most robust test for assessing del- complete metatherian antemolar milk denti- tatheroidean relationships will be provided by tion except dP4 to a vestigial state are not evidence from tooth replacement. In fact, in known for certain, although, as has often been spite of the dif®culties of observing it on fos- suggested, the phenomenon is very likely re- sils, it is probable that the pattern of tooth re- lated to the peculiar method of attachment of placement and eruption of living marsupials the newborn young to the nipple in the moth- represent one of the best metatherian syna- er's pouch.'' pomorphies (p. 218).'' Rougier et al. (1998) More recently Luckett (1993: p. 195) also demonstrated that the marsupial dental re- claimed a link between the highly modi®ed placement pattern is present in Deltatheridium, dental development pattern and reproductive a deltatheroidean from the Late Cretaceous of mode in marsupials. ``(T)his modi®ed anteri- Mongolia. or dentition is correlated with the prolonged In addition to using this character in phy- lactation period of marsupials, especially with logeny reconstruction, paleontologists have the `period of ®xation' (Hill and O'Donoghue used the hypothesized link between the de- 1913), during which the suckling young is rived marsupial tooth development pattern continuously attached to the nipple for a and the distinct marsupial reproductive pat- lengthy period of time. The well developed tern to make inferences about the reproduc- tongue and nipple ®ll the oral cavity during tive patterns of fossil taxa. Cifelli et al. (1996: this period, and the continued pressure exert- p. 717) argued on the basis of observing the ed by these structures probably has an effect marsupial tooth replacement pattern in Alpha- on the developing tooth germs underlying the don ``that at least some reproductive speciali- oral epithelium.'' zations of marsupials, including nipple ®xa- Because aspects of dental development and tion, were probably established during the replacement can be identi®ed and studied in Mesozoic, earlier than previously suggested.'' fossils, the evolution of various conditions Martin (1997) reported that dryolestid eupan- may be documented. Cifelli et al. (1996) de- totheres from the Jurassic show unreduced scribed an immature specimen of Alphadon tooth replacement (i.e., a pattern similar to eu- from the Late Cretaceous of North America therians and different from marsupials) and that seems to show a dental replacement pat- concluded, ``Therefore, a marsupial reproduc- tern similar to that seen in living dasyurids or tive pattern most probably can be ruled out for didelphids. On the basis of this specimen, Ci- Late Jurassic `eupantotheres' with a plesio- 326 A. F. H. VAN NIEVELT AND KATHLEEN K. SMITH morphous mode of tooth replacement'' (p. 15). are referred to neither subscript nor super- Rougier et al. (1998: p. 462) also commented script is used (e.g., P3). The homology of the on the likely reproductive mode of deltather- teeth in the marsupial dentition has been con- oideans. ``If the metatherian patterns of skull troversial and there are several alternate no- development, tooth replacement and repro- menclatures (Flower 1867; Thomas 1887; Zie- duction are correlated, deltatheroideans may gler 1971b; Archer 1978; Luckett 1993). As will already have possessed the basic marsupial be seen below, in M. domestica, we were unable reproductive pattern.'' to detect a vestigial ®rst generation of teeth. In this paper, we report observations on We hypothesize that the basic pattern of den- dental development and tooth eruption in the tal replacement is homologous in all marsu- didelphid Monodelphis domestica. We also pre- pials, and we have followed the ontogeneti- sent comparative data on tooth replacement in cally based system of Luckett (1993). There- other mammals, both marsupial and placen- fore, following Luckett, we designate the teeth tal. We address the two major predictions of found in the adult dentition as follows: The the hypothesis discussed above. First, we ex- upper incisors are designated I1 to I5, the low- amine the progress of dental development ers I1 to I4 (from mesial to distal). Canines are 1 during the period of ®xation to see if odon- designated C and C1.
Recommended publications
  • Specialized Stem Cell Niche Enables Repetitive Renewal of Alligator Teeth
    Specialized stem cell niche enables repetitive renewal PNAS PLUS of alligator teeth Ping Wua, Xiaoshan Wua,b, Ting-Xin Jianga, Ruth M. Elseyc, Bradley L. Templed, Stephen J. Diverse, Travis C. Glennd, Kuo Yuanf, Min-Huey Cheng,h, Randall B. Widelitza, and Cheng-Ming Chuonga,h,i,1 aDepartment of Pathology, University of Southern California, Los Angeles, CA 90033; bDepartment of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; cLouisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643; dEnvironmental Health Science and eDepartment of Small Animal Medicine and Surgery, University of Georgia, Athens, GA 30602; fDepartment of Dentistry and iResearch Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 70101, Taiwan; and gSchool of Dentistry and hResearch Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan Edited by Edward M. De Robertis, Howard Hughes Medical Institute/University of California, Los Angeles, CA, and accepted by the Editorial Board March 28, 2013 (received for review July 31, 2012) Reptiles and fish have robust regenerative powers for tooth renewal. replaced from the dental lamina connected to the lingual side of However, extant mammals can either renew their teeth one time the deciduous tooth (15). Human teeth are only replaced one time; (diphyodont dentition) or not at all (monophyodont dentition). however, a remnant of the dental lamina still exists (16) and may Humans replace their milk teeth with permanent teeth and then become activated later in life to form odontogenic tumors (17). lose their ability for tooth renewal.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Resolving the Relationships of Paleocene Placental Mammals
    Biol. Rev. (2015), pp. 000–000. 1 doi: 10.1111/brv.12242 Resolving the relationships of Paleocene placental mammals Thomas J. D. Halliday1,2,∗, Paul Upchurch1 and Anjali Goswami1,2 1Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K. 2Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, U.K. ABSTRACT The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic.
    [Show full text]
  • Longitudinal Studies on Tooth Replacement in the Leopard
    LONGITUDINAL STUDIES ON TOOTH REPLACEMENT IN THE LEOPARD GECKO by Andrew Carlton Edward Wong BMSc, DDS, The University of Alberta, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Craniofacial Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2015 © Andrew Carlton Edward Wong, 2015 Abstract The leopard gecko is an emerging reptilian model for the molecular basis of indefinite tooth replacement. Here we characterize the tooth replacement frequency and pattern of tooth loss in the normal adult gecko. We chose to perturb the system of tooth replacement by activating the Wingless signaling pathway (Wnt). Misregulation of Wnt leads to supernumerary teeth in mice and humans. We hypothesized by activating Wnt signaling with LiCl, tooth replacement frequency would increase. To measure the rate of tooth loss and replacement, weekly dental wax bites of 3 leopard geckos were taken over a 35-week period. The present/absent tooth positions were recorded. During the experimental period, the palate was injected bilaterally with NaCl (control) and then with LiCl. The geckos were to be biological replicates. Symmetry was analyzed with parametric tests (repeated measures ANOVA, Tukey’s post-hoc), while time for emergence and total absent teeth per week were analyzed with non- parametric tests (Kruskal-Wallis ANOVA, Mann-Whitney U post-hoc and Bonferroni Correction). The average replacement frequency was 6-7 weeks and posterior-to-anterior waves of replacement were formed. Right to left symmetry between individual tooth positions was high (>80%) when all teeth were included but dropped to 50% when only absent teeth were included.
    [Show full text]
  • Memorial to Franklyn Bosworth Van Houten (1914–2010) M
    Memorial to Franklyn Bosworth Van Houten (1914–2010) M. DANE PICARD Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA When I arrived on the Rutgers campus in the fall of 1932, I had some vague idea that I wanted to study natural history whatever that was—or is. So I found myself with a major split between biology and geology. —Van Houten to Sheldon Judson (10/25/1990) Franklyn Bosworth Van Houten (1914–2010), sedimentologist, teacher, and the chairman of my dissertation committee at Princeton University, recently left us for red beds on Mars or perhaps it was to oolitic ironstone in northeastern Colombia. Van lived through most of the twentieth century and he made a strong start on the twenty-first century. Not long before he passed on at the age of 96, we talked on the telephone, and he asked about my research, my life and family, as he had done for almost half a century. He was always a friend. Early in my first month at Princeton, Harry Hammond Hess (1906–1969), then chairman of the Department of Geosciences, suggested a thesis topic. It evolved into an effort to correlate normal and reversed paleomagnetic events in the Triassic Chugwater Formation (now a Group) of west-central Wyoming. Harry believed many geophysicists that were publishing on reversals of Earth’s magnetic field didn’t have a firm grasp of the geological foundation of such fluctuations. Franklyn B. Van Houten, a red-bed enthusiast and specialist, soon became my principal supervisor, joined later by Bob Hargraves (1928–2003), a first-rate petrologist from South Africa.
    [Show full text]
  • Autocrine and Paracrine Shh Signaling Are Necessary for Tooth Morphogenesis, but Not Tooth Replacement in Snakes and Lizards (Squamata)
    Developmental Biology 337 (2010) 171–186 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Evolution of Developmental Control Mechanisms Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata) Gregory R. Handrigan, Joy M. Richman ⁎ Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada article info abstract Article history: Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes Received for publication 30 August 2009 and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing Revised 12 October 2009 dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing Accepted 12 October 2009 gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth Available online 20 October 2009 bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling Keywords: Reptile induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine Evolution signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental Development explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the Odontogenesis morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. Sonic hedgehog vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates Patched1 that Shh is needed for the normal development of teeth in snakes and lizards.
    [Show full text]
  • APS Bulletin December 1998
    Palæontological Society Bulletin VOLUMEAAlberta 13 • NUMBER l4 berta DECEMBER 1998 ALBERTA PALÆONTOLOGICAL SOCIETY OFFICERS President Wayne Braunberger 278-5154 Program Coordinator Kris Vasudevan 288-7955 Vice-President Vaclav Marsovsky 547-0182 Curator Ron Fortier 285-8041 Treasurer * (Les Adler 289-9972) Librarian Dr. Gerry Morgan 241-0963 Secretary Don Sabo 278-8045 Events Coordinator Keith Mychaluk 228-3211 Past-President Les Adler 289-9972 Director at Large Dr. David Mundy 281-3668 DIRECTORS Editor Howard Allen 274-1858 Social Director Cory Gross 720-5725 Membership Geoff Barrett 279-1838 †APAC Representative Don Sabo 278-8045 * This position is currently unfilled. Person listed is acting officer on an interim basis only. †APAC is the Alberta Palaeontological Advisory Committee The Society was incorporated in 1986, as a non-profit organization formed to: a. Promote the science of palaeontology through study and education. b. Make contributions to the science by: 1) discovery 4) education of the general public 2) collection 5) preservation of material for study and the future 3) description c. Provide information and expertise to other collectors. d. Work with professionals at museums and universities to add to the palaeontological collections of the province (preserve Alberta’s heritage). MEMBERSHIP: Any person with a sincere interest in palaeontology is eligible to present their application for membership in the Society. (Please enclose membership dues with your request for application.) Single membership $15.00 annually Family or Institution $20.00 annually THE BULLETIN WILL BE PUBLISHED QUARTERLY: March, June, September and December. Deadline for submitting material for publication is the 15th of the month prior to publication.
    [Show full text]
  • Proces Wymiany Zębów U Wybranych Grup Ssaków W Ujęciu Ewolucyjnym
    Tom 70 2021 Numer 1 (330) Strony 83–93 Paweł Muniak Wydział Biologii Uniwersytet Jagielloński Gronostajowa 7, 30-387 Kraków E-mail: [email protected] PROCES WYMIANY ZĘBÓW U WYBRANYCH GRUP SSAKÓW W UJĘCIU EWOLUCYJNYM WSTĘP pod względem wymiany zębowej wyjątkowe, gdyż tylko u nich widać kształtującą się w Wymiana zębów u zwierząt kręgowych ciągu ewolucji tendencję do difiodoncji, czy- jest ważnym zjawiskiem zarówno w ska- li wytwarzania jedynie dwóch pokoleń zę- li osobnika, zwiększającym jego dostosowa- bów: mlecznych i stałych, wymienianych w nie do środowiska i co za tym idzie, szan- skoordynowany sposób w ciągu krótkiego se przeżycia, jak i w szerszej perspektywie czasu życia zwierzęcia (zazwyczaj pomiędzy ewolucyjnej, pokazując trendy ewolucyjne w ukończeniem stadium oseska a dojrzałością obrębie całych grup. płciową) (SZARSKI 1998). Wymiana uzębienia jest powszechna wśród zwierząt. Większość zwierząt posiada- TERMINOLOGIA jących zęby wymienia je na nowe, stosując różne strategie. Najczęstszym typem wymia- W niniejszej pracy będę posługiwał się ny jest polifiodoncja. Polega ona na tym, że ogólnie przyjętymi skrótami z terminolo- utracony ząb jest zastępowany przez nowy, gii anatomicznej, gdzie zęby szczęki (górne) wyrastający na jego miejscu. W taki sposób będą oznaczane wielką literą: I, C, P, M, a wymienia zęby większość gadów, u których zęby żuchwy (dolne) małą literą: i, c, p, m. wymieniane są one w sposób przypadko- I tak: wy: gdy jeden ulegnie złamaniu lub wypad- nie, na jego miejsce wyrasta nowy. U ryb I/i – siekacz, chrzęstnoszkieletowych, w tym rekinów, zna- C/c – kieł, ne są inne mechanizmy wymiany uzębienia, P/p – ząb przedtrzonowy, tzn. spirale zębowe, pozwalające na wymianę M/m – ząb trzonowy.
    [Show full text]
  • Crocodile Specialist Group Newsletter
    CROCODILE SPECIALIST GROUP NEWSLETTER VOLUME 36 No. 1 • JANUARY 2017 - MARCH 2017 IUCN • Species Survival Commission CSG Newsletter Subscription The CSG Newsletter is produced and distributed by the Crocodile CROCODILE Specialist Group of the Species Survival Commission (SSC) of the IUCN (International Union for Conservation of Nature). The CSG Newsletter provides information on the conservation, status, news and current events concerning crocodilians, and on the SPECIALIST activities of the CSG. The Newsletter is distributed to CSG members and to other interested individuals and organizations. All Newsletter recipients are asked to contribute news and other materials. The CSG Newsletter is available as: • Hard copy (by subscription - see below); and/or, • Free electronic, downloadable copy from “http://www.iucncsg. GROUP org/pages/Publications.html”. Annual subscriptions for hard copies of the CSG Newsletter may be made by cash ($US55), credit card ($AUD55) or bank transfer ($AUD55). Cheques ($USD) will be accepted, however due to increased bank charges associated with this method of payment, cheques are no longer recommended. A Subscription Form can be NEWSLETTER downloaded from “http://www.iucncsg.org/pages/Publications. html”. All CSG communications should be addressed to: CSG Executive Office, P.O. Box 530, Karama, NT 0813, Australia. VOLUME 36 Number 1 Fax: +61.8.89470678. E-mail: [email protected]. JANUARY 2017 - MARCH 2017 PATRONS IUCN - Species Survival Commission We thank all patrons who have donated to the CSG and its conservation program over many years, and especially to CHAIRMAN: donors in 2015-2016 (listed below). Professor Grahame Webb PO Box 530, Karama, NT 0813, Australia Big Bull Crocs! ($15,000 or more annually or in aggregate donations) Japan, JLIA - Japan Leather & Leather Goods Industries EDITORIAL AND EXECUTIVE OFFICE: Association, CITES Promotion Committee & Japan Reptile PO Box 530, Karama, NT 0813, Australia Leather Industries Association, Tokyo, Japan.
    [Show full text]
  • New Records of Rodentia from the Duchesnean (Middle Eocene) Simi Valley Landfill Local Fauna, Sespe Formation, California
    Paludicola 8(1):49-73 September 2010 © by the Rochester Institute of Vertebrate Paleontology NEW RECORDS OF RODENTIA FROM THE DUCHESNEAN (MIDDLE EOCENE) SIMI VALLEY LANDFILL LOCAL FAUNA, SESPE FORMATION, CALIFORNIA Thomas S. Kelly Research Associate, Vertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, California 90007 ABSTRACT A large number of isolated rodent teeth have been recently recovered from the Duchesnean (middle Eocene) Simi Valley Landfill Local Fauna of the Sespe Formation during a paleontologic mitigation program at the Simi Valley Landfill and Recycling Center, Ventura County, California. Included in these teeth are new samples of Metanoiamys korthi, Paradjidaumo reynoldsi, Simiacritomys whistleri, and Simimys landeri. The discovery of upper and putative lower premolars of Simiacritomys whistleri supports it’s referral to Eomyidae. New occurrences for the Simi Valley Landfill Local Fauna include Eomyidae (one or more species of uncertain affinities) and Pareumys sp. INTRODUCTION Within the new specimens from bed 30A are numerous additional rodent teeth, including those of The middle member of the Sespe Formation, species that were previously known from small sample which is exposed along the north side of Simi Valley, sizes (Metanoiamys korthi Kelly and Whistler, 1998, Ventura County, California, has previously yielded Paradjidaumo reynoldsi Kelly, 1992, Simiacritomys numerous middle Eocene (Uintan and Duchesnean) whistleri Kelly, 1992, and Simimys landeri Kelly, fossil mammals (e.g., Golz, 1976; Golz and 1992). Also, included within these specimens are the Lillegraven, 1977; Mason, 1988; Kelly, 1990, 1992, first records of Pareumys sp. and at least one or more 2009, 2010; Kelly et al., 1991; Kelly and Whistler, undetermined eomyid species from bed 30A.
    [Show full text]
  • Publications.Html”
    CROCODILE SPECIALIST GROUP NEWSLETTER VOLUME 34 No. 4 • OCTOBER 2015 - DECEMBER 2015 IUCN • Species Survival Commission CSG Newsletter Subscription The CSG Newsletter is produced and distributed by the Crocodile CROCODILE Specialist Group of the Species Survival Commission (SSC) of the IUCN (International Union for Conservation of Nature). The CSG Newsletter provides information on the conservation, status, news and current events concerning crocodilians, and on the SPECIALIST activities of the CSG. The Newsletter is distributed to CSG members and to other interested individuals and organizations. All Newsletter recipients are asked to contribute news and other materials. The CSG Newsletter is available as: • Hard copy (by subscription - see below); and/or, • Free electronic, downloadable copy from “http://www.iucncsg. GROUP org/pages/Publications.html”. Annual subscriptions for hard copies of the CSG Newsletter may be made by cash ($US55), credit card ($AUD55) or bank transfer ($AUD55). Cheques ($USD) cannot be accepted, due to high bank charges associated with this method of payment. A Subscription Form can be downloaded from “http://www.iucncsg.org/pages/ NEWSLETTER Publications.html”. All CSG communications should be addressed to: CSG Executive Office, P.O. Box 530, Karama, NT 0813, Australia. VOLUME 34 Number 4 Fax: +61.8.89470678. E-mail: [email protected]. OCTOBER 2015 - DECEMBER 2015 PATRONS IUCN - Species Survival Commission We thank all patrons who have donated to the CSG and its conservation program over many years, and especially to CHAIRMAN: donors in 2014-2015 (listed below). Professor Grahame Webb PO Box 530, Karama, NT 0813, Australia Big Bull Crocs! ($15,000 or more annually or in aggregate donations) Japan, JLIA - Japan Leather & Leather Goods Industries EDITORIAL AND EXECUTIVE OFFICE: Association, CITES Promotion Committee & Japan Reptile PO Box 530, Karama, NT 0813, Australia Leather Industries Association, Tokyo, Japan.
    [Show full text]
  • Teeth Mammalian Teeth Differ from Teeth of Earlier Vertebrates
    Skull_Skeleton_Lab3.doc 09/15/09 page 8 of 48 Laboratory 2 Worksheet: Teeth Mammalian teeth differ from teeth of earlier vertebrates, including most living “reptiles” in three general characteristics: Characteristic Early Vertebrate Mammal Toothrow Homodont Heterodont Mammal teeth differ from front to back, early vertebrate teeth tended to be similar in all parts of the jaw. Tooth Acrodont Thecodont Mammal teeth are set in sockets (see placement a skull with missing teeth) while in reptiles the teeth are close to the surface of bone Tooth Polyphyodont Diphyodont Mammals have 2 sets of teeth, replacement deciduous "milk teeth" and the permanent teeth. Milk teeth are lost as the permanent teeth move into place in the jaws. There are four kinds of teeth in mammals: (1) incisors (for nipping), (2) canines for grasping prey, and cheekteeth of two kinds--(3) premolars ("bicuspids" in humans) and (4) molars--for shearing or grinding the food. Molars are only present in the permanent dentition (by definition). Differentiated teeth are one of the features associated with increased metabolism and increased energy requirements in mammals. Specialization within the tooth row allows efficient processing of food. A higher surface:volume ratio increases the rate of digestion when chewed food comes into contact with digestive chemicals in the gut. Tooth shape and the number of teeth have varied over evolutionary time in mammals. Many taxonomic groups have lost teeth compared to the original condition. Herbivores, such as rodents, rabbits, and most artiodactyls have no canines and have simple incisors. Carnivores do not need grinding cheekteeth because of their diet.
    [Show full text]