Evolution of Dental Replacement in Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Dental Replacement in Mammals EVOLUTION OF DENTAL REPLACEMENT IN MAMMALS ZHE-XI LUO Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213 ZOFIA KIELAN-JAWOROWSKA Instytut Paleobiologii PAN, ul. Twarda 51/55 PL-00-818 Warszawa, Poland RICHARD L. CIFELLI Oklahoma Museum of Natural History, 2401 Chautauqua, Norman, OK 73072 ABSTRACT We provide a review of dental replacement features in stem stem clades of crown mammals including multituberculates and clades of mammals and an hypothetical outline for the evolution eutriconodonts have an antero-posterior sequential and diphy- of replacement frequency, mode, and sequence in early mam- odont replacement of premolars. By contrast, stem taxa of the malian evolution. The origin of mammals is characterized by a trechnotherian clade (Zhangheotherium, Dryolestes, and Slaugh- shift from a primitive pattern of multiple, alternating replace- teria) are characterized by an alternating (p2 → p4 → p3) and ments of all postcanines in most cynodonts to a derived pattern diphyodont replacement, a condition that is shared by basal eu- of single, sequential replacement of postcanines. The stem mam- therians. The sequential replacements of premolars in most extant mal Sinoconodon, however, retained some primitive replacement placentals (either antero-posteriorly p2 → p3 → p4 as in ungu- features of cynodonts. The clade of Morganucodon 1 crown lates and carnivores, or postero-anteriorly p4 → p3 → p2 as in mammals is characterized by the typical mammalian diphyodont some insectivores) would represent secondarily derived condi- replacement in which antemolars are replaced by one generation tions within eutherians. The single replacement of P3/p3 of meta- in antero-posterior sequence, but molars are not replaced. The therians is the most derived for all therian mammals. INTRODUCTION Mammals differ from their phylogenetic rela- Diphyodont dental replacement of mammals is a tivesÐnonmammalian cynodontsÐin their greatly major apomorphy because it is certainly correlated reduced number of successional teeth per tooth lo- with the determinate growth pattern of the skull, cus. Living mammals have two generations of teeth and partly correlated with lactation, which is the (diphyodonty) at most, whereas nonmammalian cy- most important mammalian characteristic (Pond, nodonts had multiple generations of tooth replace- 1977; Tyndale-Biscoe and Renfree, 1987; Jenkins, ment sustained throughout life (polyphyodonty). 1990; and Zeller, 1999). Nursing of the neonates by Mammalian dental replacement is limited partly by maternal milk has had a profound impact on mam- a delay in the onset of dental eruption in neonates malian growth patterns and on development of nu- that nurse on maternal milk. During lactation, the merous apomorphies in dentition and skull, such as: toothless neonates can achieve a considerable the reduced replacement of the postcanines, devel- amount of cranial growth at a rapid rate before erup- opment of precise molar occlusion, formation of the tion of the ®rst generation of deciduous teeth dentary-squamosal temporomandibular joint, as ®rst (Brink, 1956; Hopson, 1973; Pond, 1977; Luckett, pointed out by Brink (1956) and elaborated by 1993). The mammalian dental replacement is also many others (Hopson and Crompton, 1969; Romer, reduced partly by an early termination of dental re- 1970; Ziegler, 1971; Hopson, 1971; Pond, 1977; placement related to the determinate skull growth Kermack and Kermack, 1984; Gow, 1985; Cromp- in mammals. Prior to weaning, the rate of skull ton and Hylander, 1986; Luckett, 1993; Luo, 1994; growth exceeds that of the postcranial skeleton. Af- Crompton, 1995). ter weaning the rate of skull growth slows down. The complex phenomenon of dental replacement The termination of the skull growth usually coin- can be broken down to several basic morphological cides with eruption of the last molar (Pond, 1977). elements. (1) Replacement frequencyÐnumber of 159 160 BULLETIN CARNEGIE MUSEUM OF NATURAL HISTORY NO. 36 successional teeth at each tooth locus, especially (3) Direction or sequence of replacement: antero- whether replacement occurred in the posterior mo- posterior versus postero-anterior. In this study we lariforms. The rate of dental replacement is directly will attempt to outline these main features of the correlated with the patterns of skull growth. (2) dental replacement patterns in cynodont-mammal Mode of replacement: alternating versus sequential. evolution. DENTAL REPLACEMENT OF EXTANT MAMMALS Placentals (Fig. 1).ÐThe diphyodont dental re- vores, none of the premolars is replaced and the placement in most living placental mammals is entire postcanine series is monophyodont (Osborn, characterized by a single replacement of deciduous 1971; Bloch et al., 1998). The embryonic precursors (``milk'') incisors, canines, and premolars by a sec- to the deciduous antemolars in the highly altricial ond generation of permanent incisors, canines and neonates are reabsorbed before eruption (Church- premolars. Molars are part of the permanent denti- ®eld, 1990; Nowak, 1991). As a result, these small tion and are never replaced (Ziegler, 1971; Williams insectivores have only a one generation of function- et al., 1989; Nowak, 1991; Evans, 1995). al postcanine teeth (monophyodonty). The same There are several well-known exceptions to this monophyodont condition appears to be also present typical diphyodont pattern among the placentals. As in some geolabidid insectivores of the Late Creta- the antemolar replacement has some degree of ho- ceous and early Tertiary (Lillegraven et al., 1981), moplasy, it can vary among genera of the same fam- although not in others (Bloch et al., 1998). Other ily. In some very small soricid and talpid insecti- exceptions to the typical placental diphyodont den- tition can be seen in the anteaters (myrmecophagid xenarthrans) and the pangolins (manid pholidotans). These mammals are toothless and rely on the tongue to feed on ants and other insects. Adult mysticete whales have baleen for ®lter feeding instead of teeth ← Fig. 1.ÐComparison of dental replacement between nonmam- malian cynodonts and extant therian mammals. A. The nonmam- malian cynodont Pachygenelus (from Crompton and Luo, 1993: ®g. 4.14). B. The eutherian Canis latrans (coyote): aboveÐde- ciduous lower dentition of a juvenile (based on Carnegie Mu- seum CM 8653); belowÐpermanent dentition of an adult (CM 7365). C. The metatherians Alphadon (modi®ed from Clemens, 1966, and Cifelli et al., 1996). Teeth in light gray: erupting/suc- cessor teeth (5 permanent teeth after eruption). Dark gray: de- ciduous predecessor teeth yet to be replaced. Gray/hatched: de- ciduous predecessor teeth in alternate positions, yet to be re- placed. Unshaded: permanent teeth. Abbreviations: di, deciduous incisor; dc, deciduous canine; dp, deciduous premolars; dpc, de- ciduous postcanines; m, molars; pc, postcanines; rpc, replacing postcanines. Most nonmammalian cynodonts (except gompho- donts and tritylodontids) are characterized by alternating replace- ments of all teeth for multiple generations, in correlation with indeterminate growth of the jaw. The deciduous postcanines are replaced at every other, or every third tooth position in the same replacement wave (as seen in Pachygenelus). As the successor tooth tends to be larger than the predecessor tooth in each tooth position, the jaw had to grow in length to accommodate the larg- er replacement teeth in cynodonts, as in extant diapsids. In most extant placental mammals, there is only one generation of re- placement for the antemolars but no replacement of molars (as seen in Canis). Tooth replacement is more reduced in metathe- rians (as seen in Alphadon), postcanine replacement only occurs in the ultimate premolar P3/p3. 2004 LUO ET AL.ÐEVOLUTION OF DENTAL REPLACEMENT IN MAMMALS 161 (Nowak, 1991). Nonetheless, most placental mam- latter two taxa do not seem to represent the gener- mals have a diphyodont dentition in which all de- alized condition of most early Tertiary mammals. ciduous antemolars (including the premolars or Given the distribution of these characteristics, it is ``milk molars'') are replaced by the successional clear that primitively the placental crown group as and permanent teeth. This generalized placental a whole has sequential replacement of premolars, condition is less specialized than those of extant but it is not clear whether the antero-posterior di- marsupials and monotremes. rection, or the postero-anterior direction would pre- The sequence of replacement of premolars is also sent the ancestral condition of all extant placentals. variable among various extant placental groups. In Metatherians (Fig. 1C).ÐIn metatherians includ- the talpid insectivore Scapanus, the eruption of de- ing extant marsupials, only the ultimate premolar ciduous premolars and their replacement occur ear- (P3/p3) has both an erupted deciduous tooth and a lier in the ultimate premolar locus than the more successor tooth (Luckett, 1993; Cifelli et al., 1996; anterior premolar loci (Zielger, 1971). The same Rougier et al., 1998). Other antemolars have only postero-anterior sequences of premolar shedding one generation of functional teeth in most marsu- and eruption also occur in the chrysochlorid Er- pials. The ®rst and second premolars have the erupt- emitalpa (Kindahl, 1963), the macroscelidid Ele- ed deciduous teeth retained in adults, without re- phantulus (Kindahl, 1957), and in some lipotyph- placing successors. The incisors and canines
Recommended publications
  • Reptile-Like Physiology in Early Jurassic Stem-Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Reptile-like physiology in Early Jurassic stem-mammals Authors: Elis Newham1*, Pamela G. Gill2,3*, Philippa Brewer3, Michael J. Benton2, Vincent Fernandez4,5, Neil J. Gostling6, David Haberthür7, Jukka Jernvall8, Tuomas Kankanpää9, Aki 5 Kallonen10, Charles Navarro2, Alexandra Pacureanu5, Berit Zeller-Plumhoff11, Kelly Richards12, Kate Robson-Brown13, Philipp Schneider14, Heikki Suhonen10, Paul Tafforeau5, Katherine Williams14, & Ian J. Corfe8*. Affiliations: 10 1School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. 2School of Earth Sciences, University of Bristol, Bristol, UK. 3Earth Science Department, The Natural History Museum, London, UK. 4Core Research Laboratories, The Natural History Museum, London, UK. 5European Synchrotron Radiation Facility, Grenoble, France. 15 6School of Biological Sciences, University of Southampton, Southampton, UK. 7Institute of Anatomy, University of Bern, Bern, Switzerland. 8Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 9Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland. 10Department of Physics, University of Helsinki, Helsinki, Finland. 20 11Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH Germany. 12Oxford University Museum of Natural History, Oxford, OX1 3PW, UK. 1 bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13Department of Anthropology and Archaeology, University of Bristol, Bristol, UK. 14Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
    [Show full text]
  • Homologies of the Anterior Teeth in Lndriidae and a Functional Basis for Dental Reduction in Primates
    Homologies of the Anterior Teeth in lndriidae and a Functional Basis for Dental Reduction in Primates PHILIP D. GINGERICH Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109 KEY WORDS Dental reduction a Lemuriform primates . Indriidae . Dental homologies - Dental scraper . Deciduous dentition - Avahi ABSTRACT In a recent paper Schwartz ('74) proposes revised homologies of the deciduous and permanent teeth in living lemuriform primates of the family Indriidae. However, new evidence provided by the deciduous dentition of Avahi suggests that the traditional interpretations are correct, specifically: (1) the lat- eral teeth in the dental scraper of Indriidae are homologous with the incisors of Lemuridae and Lorisidae, not the canines; (2) the dental formula for the lower deciduous teeth of indriids is 2.1.3; (3) the dental formula for the lower perma- nent teeth of indriids is 2.0.2.3;and (4)decrease in number of incisors during pri- mate evolution was usually in the sequence 13, then 12, then 11. It appears that dental reduction during primate evolution occurred at the ends of integrated in- cisor and cheek tooth units to minimize disruption of their functional integrity. Anterior dental reduction in the primate Schwartz ('74) recently reviewed the prob- family Indriidae illustrates a more general lem of tooth homologies in the dental scraper problem of direction of tooth loss in primate of Indriidae and concluded that no real evi- evolution. All living lemuroid and lorisoid pri- dence has ever been presented to support the mates (except the highly specialized Dauben- interpretation that indriids possess four lower tonid share a distinctive procumbent, comb- incisors and no canines.
    [Show full text]
  • Micheli Stefanello
    UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIODIVERSIDADE ANIMAL Micheli Stefanello DESCRIÇÃO E FILOGENIA DE UM NOVO ESPÉCIME DE CINODONTE PROBAINOGNÁTIO DO TRIÁSSICO SUL-BRASILEIRO Santa Maria, RS 2018 Micheli Stefanello DESCRIÇÃO E FILOGENIA DE UM NOVO ESPÉCIME DE CINODONTE PROBAINOGNÁTIO DO TRIÁSSICO SUL-BRASILEIRO Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Biodiversidade Animal, Área de Concentração em Sistemática e Biologia Evolutiva, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de Mestre em Ciências Biológicas – Área Biodiversidade Animal. Orientador: Prof. Dr. Sérgio Dias da Silva Santa Maria, RS 2018 Micheli Stefanello DESCRIÇÃO E FILOGENIA DE UM NOVO ESPÉCIME DE CINODONTE PROBAINOGNÁTIO DO TRIÁSSICO SUL-BRASILEIRO Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Biodiversidade Animal, Área de Concentração em Sistemática e Biologia Evolutiva, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de Mestre em Ciências Biológicas – Área Biodiversidade Animal. Aprovada em 28 de fevereiro de 2018: Santa Maria, RS 2018 AGRADECIMENTOS Ao meu orientador, Dr. Sérgio Dias da Silva, pela orientação, por todo o tempo despendido ao longo desse mestrado e por possibilitar meu aprimoramento na área a qual tenho apreço. Aos colegas do Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia da Universidade Federal de Santa Maria (CAPPA/UFSM) e do Laboratório de Paleobiodiversidade Triássica, dessa mesma instituição, pela convivência e por terem ajudado-me de diferentes formas ao longo do mestrado. Em especial, ao colega Rodrigo Temp Müller, pela coleta do espécime (objeto de estudo dessa dissertação), por toda a ajuda com o TNT e com as figuras, e por auxiliar-me de inúmeras formas.
    [Show full text]
  • The Mammary Gland and Its Origin During Synapsid Evolution
    P1: GMX Journal of Mammary Gland Biology and Neoplasia (JMGBN) pp749-jmgbn-460568 January 9, 2003 17:51 Style file version Nov. 07, 2000 Journal of Mammary Gland Biology and Neoplasia, Vol. 7, No. 3, July 2002 (C 2002) The Mammary Gland and Its Origin During Synapsid Evolution Olav T. Oftedal1 Lactation appears to be an ancient reproductive trait that predates the origin of mammals. The synapsid branch of the amniote tree that separated from other taxa in the Pennsylva- nian (>310 million years ago) evolved a glandular rather than scaled integument. Repeated radiations of synapsids produced a gradual accrual of mammalian features. The mammary gland apparently derives from an ancestral apocrine-like gland that was associated with hair follicles. This association is retained by monotreme mammary glands and is evident as ves- tigial mammary hair during early ontogenetic development of marsupials. The dense cluster of mammo-pilo-sebaceous units that open onto a nipple-less mammary patch in monotremes may reflect a structure that evolved to provide moisture and other constituents to permeable eggs. Mammary patch secretions were coopted to provide nutrients to hatchlings, but some constituents including lactose may have been secreted by ancestral apocrine-like glands in early synapsids. Advanced Triassic therapsids, such as cynodonts, almost certainly secreted complex, nutrient-rich milk, allowing a progressive decline in egg size and an increasingly altricial state of the young at hatching. This is indicated by the very small body size, presence of epipubic bones, and limited tooth replacement in advanced cynodonts and early mammali- aforms. Nipples that arose from the mammary patch rendered mammary hairs obsolete, while placental structures have allowed lactation to be truncated in living eutherians.
    [Show full text]
  • Mammalian Faunal Succession in the Cretaceous of the Kyzylkum Desert
    Journal of Mammalian Evolution, Vol. 12, Nos. 1/2,C 2005)June 2005 ( DOI: 10.1007/s10914-005-4867-3 A number of typographical errors were introduced during copyediting. All that were found were corrected in this version. Mammalian Faunal Succession in the Cretaceous of the Kyzylkum Desert J. David Archibald1,3 and Alexander O. Averian2 ov Both metatherians and eutherians are known from the Early Cretaceous (Barremian, 125 mya; million years ago) of China, while eutherian-dominated mammalian faunas appeared in Asia at least by the earliest Late Cretaceous (Cenomanian, 95 mya). The approximately 99–93 my old (Cenomanian) Sheikhdzheili l.f. from western Uzbekistan is a small sample of only eutherians, including three zhelestids and a possible zalambdalestoid. The much better-known 90 my old (Turonian) Bissekty l.f. at Dzharakuduk iin central Uzbekistan includes 15 named and un- named species, based on ongoing analyses. Of these, 12 are eutherians represented by at least the three groups—asioryctitheres, zalambdalestids, and zhelestids—plus an eutherian of uncertain position—Paranyctoides. Zalambdalestids and zhelestids have been argued to be related to the origin of the placental gliriforms (Euarchontoglires) and ferungulates (Laurasiatheria), respec- tively. Although there are four previously recognized metatherians, we believe three are referable to the deltatheroid Sulestes karakshi and the fourth, Sailestes quadrans, may belong to Paranyc- toides. There is one multituberculate and one symmetrodont in the Bissekty l.f. While comparably aged (Turonian) localities in North America have somewhat similar non-therians, they have more metatherians and no eutherians. The next younger localities (early Campanian, ∼80 mya) in North America have both a zhelestid and Paranyctoides, suggesting dispersal of eutherians from Asia.
    [Show full text]
  • Mammalian Origins Major Groups of Synapsida
    Mammalogy 4764 9/16/2009 Chapter 4 “Reptile” Mammalian Origins Early mammal Carnivore Amniota Herbivore Feldhamer Table 4.1 Savage and Long 1986 Major Fig. 3.2, Vaughn, Fig. 4.1, Feldhamer groups Mammalian Origins of Dimetrodon Overview Synapsida Synapsids Pelycosaurs and Therapsids First Mammals Mesozoic Era appear Feldhamer Fig. 4.2 Cenozoic Era radiate Savage and Long 1986 Pelycosaur Skull, jaw musculature, and teeth Cynodontia -- Advanced, predaceous therapsids Pelycosaur Scymnognathus Cynognathus Therapsid Early Cynodont Derived Therapsid/Mammal Primitive Late Cynodont Fig. 3.2, Vaughn Thrinaxodon Fig 4.3 & 4, Feldhamer 1 Mammalogy 4764 9/16/2009 Skeletal transition Extinction of Cynodonts Possibly competition from dinosaurs Pelycosaur Early Cynodonts were dog-size, last surviving were squirrel sized Fig. 4.15 Mammals that survived while Cynodonts went extinct (contemporary) were mouse-sized. Cynodont Thrinaxodon Modern Mammal Fig. 3.5, Vaughn Fig. 4.16c, Early Cynodont Early mammals Changes in land masses Feldhamer 4.11 200 - 250 million years ago Derived characters: Dentary/squamosal jaw articulation Diphyodont dentition 200 MYA 180 MYA Mammary glands Secondary palate Early Mid- Viviparity (loss of eggshell) When? Jurassic Jurassic 65 MYA 135 MYA Early Early Cretaceous Cenozoic Feldhamer 4.5, 4.9 Skull and teeth of mammals 2 Mammalogy 4764 9/16/2009 Teeth and Dentition of Mammals Teeth Heterodont teeth with different functions Differentiated on the basis of function, resulting in increased One of the major keys efficiency acquiring and digesting food. to success of mammals Teeth occur in 3 bones of skull: Teeth of mammals are premaxilla, maxilla, dentary extremely variable with different diets -- more than other taxa Feldhamer et al.
    [Show full text]
  • Eutherians Experienced Elevated Evolutionary Rates in the Immediate
    Table S1 – Dates of the Cretaceous geological stages and Cenozoic North American Land Mammal Ages as used for dating the topologies and determining taxon occurrences. STAGE START TIME END TIME STAGE START TIME END TIME BERRIASIAN 145 139.8 TIFFANIAN 60.2 56.8 VALANGINIAN 139.8 132.9 CLARKFORKIAN 56.8 55.8 HAUTERIVIAN 132.9 129.4 WASATCHIAN 55.8 50.3 BARREMIAN 129.4 125 BRIDGERIAN 50.3 46.2 APTIAN 125 113 UINTAN 46.2 42 ALBIAN 113 100.5 DUCHESNEAN 42 38 CENOMANIAN 100.5 93.9 CHADRONIAN 38 33.9 TURONIAN 93.9 89.8 ORELLAN 33.9 30.8 CONIACIAN 89.8 86.3 ARIKAREEAN 30.8 20.6 SANTONIAN 86.3 83.6 HEMINGFORDIAN 20.6 16.3 CAMPANIAN 83.6 72.1 BARSTOVIAN 16.3 13.6 MAASTRICHTIAN 72.1 66 CLARENDONIAN 13.6 10.3 PUERCAN 66 63.3 HEMPHILLIAN 10.3 4.9 TORREJONIAN 63.3 60.2 BLANCAN TO RECENT 4.9 0 Table S2 – Occurrences of each genus in this analysis in the time bins from Table 1. Stage 1 is the Berriasian, Stage 12 the Maastrichtian, Stage 13 the Puercan, and so on. TAXON FIRST STAGE LAST STAGE TAXON FIRST STAGE LAST STAGE Peramus 1 1 Mimatuta 13 13 Deltatheridium 11 12 Desmatoclaenus 13 15 Sheikhdzheilia 6 7 Protoselene 13 15 Avitotherium 11 11 Bunophorus 17 18 Gallolestes 11 11 Diacodexis 17 18 Alostera 11 12 Homacodon 18 20 Parazhelestes 9 9 Hyopsodus 16 20 Aspanlestes 9 11 Meniscotherium 17 17 Zhelestes 8 9 Phenacodus 14 18 Paranyctoides 8 12 Macrocranion 15 20 Batodon 11 12 Alsaticopithecus 18 18 Maelestes 11 11 Teilhardimys 15 18 Bobolestes 6 7 Apheliscus 15 17 Bulaklestes 9 9 Haplomylus 15 19 Daulestes 8 9 Hilalia 18 18 Uchkudukodon 9 9 Orthaspidotherium
    [Show full text]
  • The Ear in Mammal-Like Reptiles and Early Mammals
    Acta Palaeontologica Polonica Vol. 28, No. 1-2 pp, 147-158 Warszawa, 1983 Second Symposium on Mesozoic T erre stial Ecosystems, Jadwisin 1981 KENNETH A. KERMACK and FRANCES MUSSETT THE EAR IN MAMMAL-LIKE REPTILES AND EARLY MAMMALS KERMACK, K . A. a nd MUSS ETT, F.: The ear in mammal-like r eptiles an d early mammals. Acta Palaeont. P olonica , 28, 1-2, 147-158, 1983. Th e early m embers of the Theropsida lacked a tympanic membrane. In the later theropslds, the Therapsid a, a tym p an ic membrane develop ed from thc skin on the lateral side of th e lower jaw. The tympanum is not homologous In the Therapsida and ' t he Sauropslda. The ther apsid ea r w as a poor receiver of airborne sound, both In hi gh frequency r esp onse and In the r ange of frequencies encompassed. With the radiation of the Sauropsida in the Triassic the large therapsids became extinct, the small therap si ds evolv ed In to the mammal s and became nocturnal. High frequency hearin g w as essen tial for the nocturn al mode of life; quadrate and arttcutar became diss ociated from the jaw hinge to become the m ammali an au di tory ossi cles . I n the Theria the cochlea became coil ed. The spiral cochlea could n ot have existed until there w as a middle ear w ith the n ec essary h ig h f re q uency r esp onse. This m ay n ot have been until the Cretace ous.
    [Show full text]
  • The Mesozoic Era Alvarez, W.(1997)
    Alles Introductory Biology: Illustrated Lecture Presentations Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge Vertebrate Evolution in the Late Paleozoic and Mesozoic Eras ----------------------- Vertebrate Evolution in the Late Paleozoic and Mesozoic • Amphibians to Reptiles Internal Fertilization, the Amniotic Egg, and a Water-Tight Skin • The Adaptive Radiation of Reptiles from Scales to Hair and Feathers • Therapsids to Mammals • Dinosaurs to Birds Ectothermy to Endothermy The Evolution of Reptiles The Phanerozoic Eon 444 365 251 Paleozoic Era 542 m.y.a. 488 416 360 299 Camb. Ordov. Sil. Devo. Carbon. Perm. Cambrian Pikaia Fish Fish First First Explosion w/o jaws w/ jaws Amphibians Reptiles 210 65 Mesozoic Era 251 200 180 150 145 Triassic Jurassic Cretaceous First First First T. rex Dinosaurs Mammals Birds Cenozoic Era Last Ice Age 65 56 34 23 5 1.8 0.01 Paleo. Eocene Oligo. Miocene Plio. Ple. Present Early Primate First New First First Modern Cantius World Monkeys Apes Hominins Humans A modern Amphibian—the toad A modern day Reptile—a skink, note the finely outlined scales. A Comparison of Amphibian and Reptile Reproduction The oldest known reptile is Hylonomus lyelli dating to ~ 320 m.y.a.. The earliest or stem reptiles radiated into therapsids leading to mammals, and archosaurs leading to all the other reptile groups including the thecodontians, ancestors of the dinosaurs. Dimetrodon, a Mammal-like Reptile of the Early Permian Dicynodonts were a group of therapsids of the late Permian. Web Reference http://www.museums.org.za/sam/resource/palaeo/cluver/index.html Therapsids experienced an adaptive radiation during the Permian, but suffered heavy extinctions during the end Permian mass extinction.
    [Show full text]
  • Oral Structure, Dental Anatomy, Eruption, Periodontium and Oral
    Oral Structures and Types of teeth By: Ms. Zain Malkawi, MSDH Introduction • Oral structures are essential in reflecting local and systemic health • Oral anatomy: a fundamental of dental sciences on which the oral health care provider is based. • Oral anatomy used to assess the relationship of teeth, both within and between the arches The color and morphology of the structures may vary with genetic patterns and age. One Quadrant at the Dental Arches Parts of a Tooth • Crown • Root Parts of a Tooth • Crown: part of the tooth covered by enamel, portion of the tooth visible in the oral cavity. • Root: part of the tooth which covered by cementum. • Posterior teeth • Anterior teeth Root • Apex: rounded end of the root • Periapex (periapical): area around the apex of a tooth • Foramen: opening at the apex through which blood vessels and nerves enters • Furcation: area of a two or three rooted tooth where the root divides Tooth Layers • Enamel: the hardest calcified tissue covering the dentine in the crown of the tooth (96%) mineralized. • Dentine: hard calcified tissue surrounding the pulp and underlying the enamel and cementum. Makes up the bulk of the tooth, (70%) mineralized. Tooth Layers • Pulp: the innermost noncalsified tissues containing blood vessels, lymphatics and nerves • Cementum: bone like calcified tissue covering the dentin in the root of the tooth, 50% mineralized. Tooth Layers Tooth Surfaces • Facial: Labial , Buccal • Lingual: called palatal for upper arch. • Proximal: mesial , distal • Contact area: area where that touches the adjacent tooth in the same arch. Tooth Surfaces • Incisal: surface of an incisor which toward the opposite arch, the biting surface, the newly erupted “permanent incisors have mamelons”: projections of enamel on this surface.
    [Show full text]
  • Femur of a Morganucodontid Mammal from the Middle Jurassic of Central Russia
    Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia PETR P. GAMBARYAN and ALEXANDER 0.AVERIANOV Gambaryan, P.P. & Averianov, A.O. 2001. Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia. -Acta Palaeontologica Polonica 46,1,99-112. We describe a nearly complete mammalian femur from the Middle Jurassic (upper Bathonian) from Peski quarry, situated some 100 km south east of Moscow, central Rus- sia. It is similar to the femora of Morganucodontidae in having a globular femoral head, separated from the greater trochanter and reflected dorsally, fovea capitis present, both trochanters triangular and located on the same plane, distal end flat, mediolaterally expanded, and somewhat bent ventrally, and in the shape and proportions of distal condyles. It is referred to as Morganucodontidae gen. et sp. indet. It is the first representa- tive of this group of mammals in Eastern Europe from the third Mesozoic mammal local- ity discovered in Russia. Exquisite preservation of the bone surface allowed us to recon- struct partial hind limb musculature. We reconstruct m. iliopsoas as inserting on the ridge, which starts at the lesser trochanter and extends along the medial femoral margin for more than half of the femur length. On this basis we conclude that the mode of loco- motion of the Peski morganucodontid was similar to that of modern echidnas. During the propulsive phase the femur did not retract and the step elongation was provided by pronation of the femur. Key words : Mammalia, Morganucodontidae, femur, anatomy, locomotion, Jurassic, Russia. Petr P. Gambaryan [[email protected]] and Alexander 0.
    [Show full text]
  • A Non-Mammaliaform Cynodont from the Upper Triassic of South Africa: a Therapsid Lazarus Taxon?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE A non-mammaliaform cynodont from the Upper Triassic of South Africa: a therapsid Lazarus taxon? Fernando Abdala1*, Ross Damiani2, Adam Yates1 & Johann Neveling3 1Bernard Price Institute for Palaeontological Research, School of Geosciences, University of the Witwatersrand, Private Bag 3, WITS, 2050 South Africa 2Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191, Stuttgart, Germany 3Council for Geoscience, Private Bag X112, Pretoria, 0001 South Africa Received 20 January 2006. Accepted 10 January 2007 The tetrapod record of the ‘Stormberg Group’, including the Lower Elliot Formation, in the South African Karoo is widely dominated by archosaurian reptiles, contrasting with the therapsid dominion of the subjacent Beaufort Group. The only therapsids represented by skeletal remains in the Upper Triassic Lower Elliot Formation are the large traversodontid cynodont Scalenodontoides macrodontes and the recently described tritheledontid cynodont Elliotherium kersteni. Here we present a fragmentary lower jaw that provides evidence of a third type of cynodont for the Upper Triassic of South Africa. The fossil is tentatively assigned to the Diademodontidae. The latter representative of this family is known from the Late Anisian, and its tentative record in the Norian Lower Elliot Formation, if confirmed, will represent a case of Lazarus taxon. Thus, Diademodontidae apparently disappeared from the fossil record by the end of the Anisian and then reappeared in the Norian of South Africa, a stratigraphic interval of some 21 million years. This new cynodont record, together with the recently described Tritheledontidae, show that cynodonts are now the second most diverse tetrapod group in the Lower Elliot fauna.
    [Show full text]