Quartus II Software Version 6.1 Release Notes

Total Page:16

File Type:pdf, Size:1020Kb

Quartus II Software Version 6.1 Release Notes Quartus II Software Release Notes December 2006 Quartus II software version 6.1 This document provides late-breaking information about the following areas of this version of the Altera® Quartus® II software. For information about memory, disk space, and system requirements, refer to the readme.txt file in your \altera\<version number> \quartus directory. For information about device support in this version of the Quartus II software, along with the latest information about timing and power models, refer to the Quartus II Device Support Release Notes on the Altera website at http://www.altera.com/literature/lit-qts.jsp. New Features & Enhancements .............................................................................2 EDA Interface Information ....................................................................................3 Changes to Software Behavior...............................................................................4 Known Issues & Workarounds.............................................................................12 General Quartus II Software Issues........................................................... 12 Platform-Specific Issues............................................................................ 23 Device Family Issues................................................................................. 31 Design Flow Issues.................................................................................... 43 SOPC Builder Issues ................................................................................. 46 EDA Integration Issues ............................................................................. 49 Simulation Model Changes ....................................................................... 51 Latest Known Quartus II Software Issues............................................................53 Software Issues Resolved.....................................................................................53 Revision History...................................................................................................56 Altera Corporation 1 RN-01015-1.0 Quartus II Software Release Notes Version 6.1 New Features & Enhancements The Quartus II software version 6.1 includes the following new features and enhancements: Advanced support for the Stratix III device family. The Chip Planner, an integrated floorplan editor and Chip Editor that provides a visual display of chip resources. The Tutorial, a new Flash-based Quartus II interactive tutorial that you can access from the Help menu. Advanced I/O Timing, which allows you to specify the board trace and any resistive or capacitive termination connected to each of the FPGA outputs. Multiprocessor support, which allows parallel processing during compilation for computers with multiple processors and results in a reduction in compilation times. Programmable Power Technology for Stratix III devices. Pin Planner enhancements to allow you to specify board trace model assignments. Detachable windows support. Windows 64-bit version. SUSE Linux Enterprise Server 9 in addition to Red Hat Enterprise Linux 3.0 and 4.0. Full device support for Cyclone II devices: EP2C8AF256, EP2C15AF256, EP2C15AF484, EP2C20AF256, and EP2C20AF484. Full device support for HardCopy II devices: HC210F484, HC240F1020, and HC240F1508. Full device support for MAX II devices: EPM240GF100, EPM240GM100, EPM570GF100, EPM570GM100, EPM570GM256, and EPM1270GM256. Full device support for Stratix II GX devices: EP2SGX30CF780, EP2SGX30DF780, EP2SGX60CF780, EP2SGX60DF780, EP2SGX60EF1152, and EP2SGX130GF1508. Altera Corporation 2 RN-01002-1.0 Quartus II Software Release Notes Version 6.1 EDA Interface Information The current version of the Quartus II software supports the following EDA tools. Supported EDA Tools Synthesis Tools Version NativeLink Support Synplicity Synplify & Synplify Pro 8.8 3 Mentor Graphics Precision RTL Synthesis 2006a 3 Mentor Graphics LeonardoSpectrum 2006a 3 Synopsys Design Compiler FPGA 2005.09 Synopsys FPGA Compiler II 3.8 3 Synopsys Design Compiler 2004.12-SP4 Magma Design Automation PALACE 2.4 3 Simulation Tools Version NativeLink Support Mentor Graphics ModelSim 6.1g 3 Mentor Graphics ModelSim-Altera 6.1g 3 Cadence NC-Sim (Windows) 5.4 s011 3 Cadence NC-Sim (UNIX) 5.82 p001 Synopsys VCS / VCS MX 2005.06-SP2 3 Aldec Active-HDL 7.1 SP1 3 Formal Verification Tools Version NativeLink (Equivalence Checking) Support Cadence Encounter Conformal 6.1 USR1 Synopsys Formality 2005.09 Chip Level Static Timing Analysis Version NativeLink Support Synopsys PrimeTime 2006.06 3 Board Level Static Timing Analysis Version NativeLink Support Mentor Graphics TAU 3.6 Board Level Symbol/Pin-out Management Version NativeLink Support Mentor Graphics I/O Designer 2005.1 Altera Corporation 3 RN-01002-1.0 Quartus II Software Release Notes Version 6.1 Changes to Software Behavior This section documents instances in which the behavior and default settings of this release of the Quartus II software have been changed from earlier releases of the software. Items listed in the following table represent cases in which the behavior of the current release of the Quartus II software is different from a previous version. Description Workaround Version 6.1 A minor change has been made to the power breakdown between I/O power and Core power in the PowerPlay Power Analyzer report. The total power dissipated on the device and the total current drawn from each voltage supply are unaffected. I/O routing power refers to the power dissipated by device core routing resources that are driven by input I/O cells. In Quartus II software versions 6.0 and 6.0 SP1, I/O routing power was reported on the PowerPlay Power Analyzer Summary report section as I/O power rather than core dynamic power. For a typical design, the net change is a change of less than 2% of power from I/O Power to Core Dynamic Thermal Power Dissipation in the Summary report section of the PowerPlay Power Analyzer. Also, the Core Dynamic Thermal Power Dissipation by Clock Domain report section did not enumerate the I/O routing power. The current version now supports the following Stratix II GX industrial ordering codes: EP2SGX90EF1152I4 EP2SGX90FF1508I4 EP2SGX130GF1508I4 EP2SGX60DF780I4 EP2SGX60EF1152I4 EP2SGX30DF780I4 Altera Corporation 4 RN-01002-1.0 Quartus II Software Release Notes Version 6.1 Description Workaround Designs that contain a user-edited Memory Correct the syntax of the Memory Initialization File (.mif) that compile Initialization File by referring to the Memory successfully earlier versions of the Quartus II Initialization File syntax description in the software may fail with the error "File Quartus II Help, or create a new Memory <filename>.mif contains illegal Initialization File with the Quartus II syntax at line <num>" in the software. Quartus II 6.1 software. These Memory Initialization Files contain illegal syntax. Illegal Memory Initialization Files were ignored by previous releases of the software. In the Quartus II software version 6.1, the tcllib library is updated from 1.7 to 1.8. If you are using advanced Tcl scripting, this change may cause your script to produce unexpected results. You may receive the following warnings Change get_nodes to use one of when you use the write_sdc command in get_ports, get_pins, get_nets, the TimeQuest Timing Analyzer: get_registers, or get_keepers. Warning: Ignored assignment create_generated_clock Warning: Collection filter Positional argument <source_objects> with value [get_nodes Pll_Inst\|altpll_component\|pll \|clk\[0\]] requires type (port pin reg kpr net ), but found type node. You receive these warnings because the create_clock or create_generated_clock assignments are ignored by the TimeQuest Timing Analyzer when using get_nodes collections. This issue is most likely to occur when using a Synopsys Design Constraints File (.sdc) generated from the Quartus II software version 6.0 or 6.0sp1 using the write_sdc command. Altera Corporation 5 RN-01002-1.0 Quartus II Software Release Notes Version 6.1 Description Workaround In the Quartus II software version 6.1, when you simulate designs that use MAX II UFM or any PLL, you might see X's in the initial part of the simulation time instead of 0's. The behavior after the X's are correct. This behavior is the same as in any third party simulators, but different from Quartus II Simulator in versions earlier than Quartus II software version 6.1. Version 6.0 SP1 In the Quartus II software version 6.0 and In the Quartus II software version 6.0 SP1, a earlier, when you created a receiver-only CMU PLL is no longer created when you instance of the alt2gxb megafunction, a CMU create a receiver-only instance. You must PLL was created that has pll_inclk and recreate the megafunction instance with the pll_locked ports. These ports prevented MegaWizard Plug-In Manager or manually the combination of two receiver-only remove the pll_inclk and pll_locked implementations at different data rates in the ports from the wrapper file. same quad. In the Quartus II software version 6.0 SP1 and You must manually change the pin name later, the TimeQuest Timing Analyzer no suffixes to lowercase in your SDC file. For longer recognizes uppercase pin suffix names example [get_pins myreg|CLK] should in an SDC constraints file. be changed to [get_pins myreg|clk]. Version 6.0 The TimeQuest Timing Analyzer's QSF2SDC The QSF2SDC conversion utility is conversion utility cannot properly convert all considered a guide to help reduce
Recommended publications
  • Irun User Guide
    irun User Guide Product Version 9.2 July 2010 © 1995-2010 Cadence Design Systems, Inc. All rights reserved. Portions © Free Software Foundation, Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation. Used by permission. Printed in the United States of America. Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA. Product NC-SIM contains technology licensed from, and copyrighted by: Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA, and is © 1989, 1991. All rights reserved. Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, and other parties and is © 1989-1994 Regents of the University of California, 1984, the Australian National University, 1990-1999 Scriptics Corporation, and other parties. All rights reserved. Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission. SystemC/HDL mixed-language simulation patent 7424703 was issued on 9/9/2008 Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders. Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties.
    [Show full text]
  • Simulator for the RV32-Versat Architecture
    Simulator for the RV32-Versat Architecture João César Martins Moutoso Ratinho Thesis to obtain the Master of Science Degree in Electrical and Computer Engineering Supervisor(s): Prof. José João Henriques Teixeira de Sousa Examination Committee Chairperson: Prof. Francisco André Corrêa Alegria Supervisor: Prof. José João Henriques Teixeira de Sousa Member of the Committee: Prof. Marcelino Bicho dos Santos November 2019 ii Declaration I declare that this document is an original work of my own authorship and that it fulfills all the require- ments of the Code of Conduct and Good Practices of the Universidade de Lisboa. iii iv Acknowledgments I want to thank my supervisor, Professor Jose´ Teixeira de Sousa, for the opportunity to develop this work and for his guidance and support during that process. His help was fundamental to overcome the multiple obstacles that I faced during this work. I also want to acknowledge Professor Horacio´ Neto for providing a simple Convolutional Neural Net- work application, used as a basis for the application developed for the RV32-Versat architecture. A special acknowledgement goes to my friends, for their continuous support, and Valter,´ that is developing a multi-layer architecture for RV32-Versat. When everything seemed to be doomed he always had a miraculous solution. Finally, I want to express my sincere gratitude to my family for giving me all the support and encour- agement that I needed throughout my years of study and through the process of researching and writing this thesis. They are also part of this work. Thank you. v vi Resumo Esta tese apresenta um novo ambiente de simulac¸ao˜ para a arquitectura RV32-Versat baseado na ferramenta de simulac¸ao˜ Verilator.
    [Show full text]
  • Lattice Radiant Software 1.1 Help
    Lattice Radiant Software 1.1 Help March 29, 2019 Copyright Copyright © 2019 Lattice Semiconductor Corporation. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Lattice Semiconductor Corporation (“Lattice”). Trademarks All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their respective owners. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Lattice may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Lattice makes no commitment to update this documentation. Lattice reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made.
    [Show full text]
  • Performed the Most Often. in FPGA Design Flow, Functional and Gate
    performed the most often. In FPGA design flow, functional and gate-level timing simulation is typically performed when designers suspect that there might be a mismatch between RTL and functional or gate-level timing simulation results, which can lead to an incorrect design. The mismatch can be caused for several reasons discussed in more detail in Tip #59. Note that the nomenclature of simulation types is not consistent. The same name, for instance “gate-level simulation”, can have slightly different meaning in simulation flows of different FPGA vendors. The situation is even more confusing in ASIC simulation flows, which have many more different simulation types, such as transistor-level, and dynamic simulation. The following figure shows simulation types designers can perform during Xilinx FPGA synthesis and physical implementation process. Figure 1: Simulation types Xilinx FPGA designers can perform simulation after each level of design transformation from the original RTL to the bitstream. The following example is a 12-bit OR gate implemented in Verilog. module sim_types(input [11:0] user_in, output user_out); assign user_out = |user_in; endmodule XST post-synthesis simulation model is implemented using LUT6 and LUT2 primitives, which are parts of Xilinx UNISIMS RTL simulation library. wire out, out1_14; LUT6 #( .INIT ( 64'hFFFFFFFFFFFFFFFE )) out1 ( .I0(user_in[3]), .I1(user_in[2]), .I2(user_in[5]), .I3(user_in[4]), .I4(user_in[7]), .I5(user_in[6]), .O(out)); LUT6 #( .INIT ( 64'hFFFFFFFFFFFFFFFE )) out2 ( .I0(user_in[9]), .I1(user_in[8]), .I2(user_in[11]), .I3(user_in[10]), .I4(user_in[1]), .I5(user_in[0]), .O(out1_14)); LUT2 #( .INIT ( 4'hE )) out3 ( .I0(out), .I1(out1_14), .O(user_out) ); Post-synthesis simulation model can be generated using the following command: $ netgen -w -ofmt verilog -sim sim.ngc post_synthesis.v Post-translate simulation model is implemented using X_LUT6 and X_LUT2 primitives, which are parts of Xilinx SIMPRIMS simulation library.
    [Show full text]
  • Simulating Altera Designs 1 2014.06.30
    Simulating Altera Designs 1 2014.06.30 QII53025 Subscribe Send Feedback This document describes simulating designs that target Altera devices. Simulation verifies design behavior before device programming. The Quartus II software supports RTL- and gate-level design simulation in supported EDA simulators. Simulation involves setting up your simulator working environment, compiling simulation model libraries, and running your simulation. Simulator Support The Quartus II software supports specific EDA simulator versions for RTL and gate-level simulation. Table 1-1: Supported Simulators Vendor Simulator Version Platform Aldec Active-HDL 9.3 Windows Aldec Riviera-PRO 2013.10 Windows, Linux Cadence Incisive Enterprise 13.1 Linux Mentor Graphics ModelSim-Altera (provided) 10.1e Windows, Linux Mentor Graphics ModelSim PE 10.1e Windows Mentor Graphics ModelSim SE 10.2c Windows, Linux Mentor Graphics QuestaSim 10.2c Windows, Linux Synopsys VCS/VCS MX 2013.06-sp1 Linux © 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at ISO www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with 9001:2008 Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes Registered no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera.
    [Show full text]
  • Mixed-Signal Simulation User Guide
    Mixed-Signal Simulation User Guide Version J-2014.09, September 2014 Copyright and Proprietary Information Notice © 2014 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement. Destination Control Statement All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them. Disclaimer SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Trademarks Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at http://www.synopsys.com/Company/Pages/Trademarks.aspx. All other product or company names may be trademarks of their respective owners. Synopsys, Inc. 700 E. Middlefield Road Mountain View, CA 94043 www.synopsys.com ii Mixed-Signal Simulation User Guide J-2014.09 Contents Audience . xv Related Publications . xv Conventions . xvi Customer Support .
    [Show full text]
  • Embedded System Tools Reference Manual
    Embedded System Tools Reference Manual Embedded Development Kit EDK 10.1, Service Pack 3 R . R © Copyright 2002 – 2008 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other designated brands included herein are trademarks of Xilinx, Inc. The PowerPC® name and logo are registered trademarks of IBM Corp., and used under license. All other trademarks are the property of their respective owners. Disclaimer: Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information. THE DOCUMENTATION IS DISCLOSED TO YOU ”AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.
    [Show full text]
  • Megacore IP Library Release Notes and Errata
    MegaCore IP Library Release Notes and Errata 101 Innovation Drive MegaCore Library Version: 8.1 San Jose, CA 95134 Document Version: 8.1.3 www.altera.com Document Date: 1 February 2009 Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap- plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. RN-IP-3.3 Contents About These Release Notes System Requirements . xi Update Status . xi Chapter 1. 8B10B Encoder/Decoder Revision History . 1–1 Errata . 1–1 Chapter 2. ASI Revision History . 2–1 Errata . 2–1 NativeLink Simulation Fails . 2–1 VCS Simulator . 2–2 NativeLink Does Not Support Gate-Level Simulation .
    [Show full text]
  • Lattice Radiant Software IP User Guide
    Lattice Radiant Software IP User Guide May 22, 2020 Copyright Copyright © 2020 Lattice Semiconductor Corporation. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Lattice Semiconductor Corporation (“Lattice”). Trademarks All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their respective owners. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Lattice may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Lattice makes no commitment to update this documentation. Lattice reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made.
    [Show full text]
  • Introduction to the Quartus II Software
    Introduction to the Quartus® II Software Version 10.0 Introduction to the Quartus® II Software ®® Altera Corporation 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 www.altera.com Introduction to the Quartus II Software Altera, the Altera logo, HardCopy, MAX, MAX+PLUS, MAX+PLUS II, MegaCore, MegaWizard, Nios, OpenCore, Quartus, Quartus II, the Quartus II logo, and SignalTap are registered trademarks of Altera Corporation in the United States and other countries. Avalon, ByteBlaster, ByteBlasterMV, Cyclone, Excalibur, IP MegaStore, Jam, LogicLock, MasterBlaster, SignalProbe, Stratix, and USB-Blaster are trademarks and/or service marks of Altera Corporation in the United States and other countries. Product design elements and mnemonics used by Altera Corporation are protected by copyright and/or trademark laws. Altera Corporation acknowledges the trademarks and/or service marks of other organizations for their respective products or services mentioned in this document, specifically: ARM is a registered trademark and AMBA is a trademark of ARM, Limited. Mentor Graphics and ModelSim are registered trademarks of Mentor Graphics Corporation. Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty. Testing and other quality control techniques are used to the extent Altera deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed.
    [Show full text]
  • Introduction to Altera IP Cores 2014.08.18
    Introduction to Altera IP Cores 2014.08.18 UG-01056 Subscribe Send Feedback ® Altera and strategic IP partners offer a broad portfolio of off-the-shelf, configurable IP cores optimized for Altera devices. The Altera Complete Design Suite (ACDS) installation includes the Altera IP library. The OpenCore and OpenCore Plus IP evaluation features enable fast acquisition, evaluation, and hardware testing of Altera IP cores. You can integrate optimized and verified IP cores into your design to shorten design cycles and maximize performance. The Quartus® II software also supports IP cores from other sources. Use the IP Catalog to efficiently parameterize and generate a custom IP variation for instantiation in your design. The Altera IP library includes the following IP core types: • Basic functions • DSP functions • Interface protocols • Memory interfaces and controllers • Processors and peripherals ™ Note: The IP Catalog (Tools > IP Catalog) and parameter editor replace the MegaWizard Plug-In Manager for IP selection and parameterization, beginning in Quartus II software version 14.0. Use the IP Catalog and parameter editor to locate and paramaterize Altera and other supported IP cores. Related Information • IP User Guide Documentation • Altera IP Release Notes Installing and Licensing IP Cores The Altera IP Library provides many useful IP core functions for production use without purchasing an additional license. You can evaluate any Altera IP core in simulation and compilation in the Quartus II ® software using the OpenCore evaluation feature. Some Altera IP cores, such as MegaCore functions, require that you purchase a separate license for production use. You can use the OpenCore Plus feature to evaluate IP that requires purchase of an additional license until you are satisfied with the functionality and performance.
    [Show full text]
  • CGC Writers Tools Template
    G A N E S H S UNDARARAJAN PO Box 5621, 4601 Lafayette St, Santa Clara, California 95056 H (469) 656-1095 [email protected] C (858)213 3219 SUMMARY A highly accomplished DESIGN/VERIFICATION ENGINEER with extensive experience in front-end RTL design in various technologies such as wireless MODEM (CDMA, WCDMA), imaging, data network, memory interfaces (WideIO), pre- and post-silicon verification strategy formulation and execution, embedded processor design aspects, and ASIC/FPGA design methodologies (front and backend flow). Possess a proven track record in converting concepts to products both as an individual contributor as well as a team leader. Worked with cross-functional teams including systems/architecture/SW teams to define specifications and successful completion of projects TECHNICAL SKILLS o Languages: System Verilog, Verilog, VHDL, System-C, C, C++, Perl, TCL, QuickCov (functional coverage), PSL/Sugar (Assertion Based Verification), PythonSV, Matlab o Simulation Tool: NCSIM, Modelsim, NCVerilog o Silicon Validation Environment: Ti Top-Sim Env o Synthesis: Cadence, Synopsys, Synplify o RTL linting: Spyglass o Static Timing Analysis: Primetime o ASIC Vendor: Agere Systems, Texas Instruments, AMI o Emulation Platform: Veloce (Mentor) o FPGA: Xilinx, Altera, Actel, Lattice PATENTS & HONORS . WIPO Patent WO2012068449: CONTROL NODE FOR A PROCESSING CLUSTER, May 2012, Texas Instruments Inc. WIPO Patent WO2012068486: LOAD/STORE CIRCUITRY FOR A PROCESSING CLUSTER, May 2012, Texas Instruments Inc. WIPO Patent WO2012068475, WO2012068498: METHOD AND APPARATUS FOR MOVING DATA FROM A SIMD REGISTER FILE TO GENERAL PURPOSE REGISTER FILE, May 2012, Texas Instruments Inc. WIPO Patent WO2012068478: SHARED FUNCTION-MEMORY CIRCUITRY FOR A PROCESSING CLUSTER, May 2012, Texas Instruments Inc.
    [Show full text]