Performed the Most Often. in FPGA Design Flow, Functional and Gate

Total Page:16

File Type:pdf, Size:1020Kb

Performed the Most Often. in FPGA Design Flow, Functional and Gate performed the most often. In FPGA design flow, functional and gate-level timing simulation is typically performed when designers suspect that there might be a mismatch between RTL and functional or gate-level timing simulation results, which can lead to an incorrect design. The mismatch can be caused for several reasons discussed in more detail in Tip #59. Note that the nomenclature of simulation types is not consistent. The same name, for instance “gate-level simulation”, can have slightly different meaning in simulation flows of different FPGA vendors. The situation is even more confusing in ASIC simulation flows, which have many more different simulation types, such as transistor-level, and dynamic simulation. The following figure shows simulation types designers can perform during Xilinx FPGA synthesis and physical implementation process. Figure 1: Simulation types Xilinx FPGA designers can perform simulation after each level of design transformation from the original RTL to the bitstream. The following example is a 12-bit OR gate implemented in Verilog. module sim_types(input [11:0] user_in, output user_out); assign user_out = |user_in; endmodule XST post-synthesis simulation model is implemented using LUT6 and LUT2 primitives, which are parts of Xilinx UNISIMS RTL simulation library. wire out, out1_14; LUT6 #( .INIT ( 64'hFFFFFFFFFFFFFFFE )) out1 ( .I0(user_in[3]), .I1(user_in[2]), .I2(user_in[5]), .I3(user_in[4]), .I4(user_in[7]), .I5(user_in[6]), .O(out)); LUT6 #( .INIT ( 64'hFFFFFFFFFFFFFFFE )) out2 ( .I0(user_in[9]), .I1(user_in[8]), .I2(user_in[11]), .I3(user_in[10]), .I4(user_in[1]), .I5(user_in[0]), .O(out1_14)); LUT2 #( .INIT ( 4'hE )) out3 ( .I0(out), .I1(out1_14), .O(user_out) ); Post-synthesis simulation model can be generated using the following command: $ netgen -w -ofmt verilog -sim sim.ngc post_synthesis.v Post-translate simulation model is implemented using X_LUT6 and X_LUT2 primitives, which are parts of Xilinx SIMPRIMS simulation library. SIMPRIMS library is used for gate-level timing simulation. wire out; wire out1_14; X_LUT6 #( .INIT ( 64'hFFFFFFFFFFFFFFFE )) out1 ( .ADR0(user_in[3]), .ADR1(user_in[2]), .ADR2(user_in[5]), .ADR3(user_in[4]), .ADR4(user_in[7]), .ADR5(user_in[6]), .O(out) ); X_LUT6 #( .INIT ( 64'hFFFFFFFFFFFFFFFE )) out2 ( .ADR0(user_in[9]), .ADR1(user_in[8]), .ADR2(user_in[11]), .ADR3(user_in[10]), .ADR4(user_in[1]), .ADR5(user_in[0]), .O(out1_14)); X_LUT2 #( .INIT ( 4'hE )) out3 ( .ADR0(out), .ADR1(out1_14), .O(user_out) ); Post-translate simulation model can be generated using the following command: $ netgen -w -ofmt verilog -dir netgen/synth -sim sim.ngd post_translate.v Post-map simulation model is also implemented using X_LUT6 and X_LUT2 primitives. The difference from the post-translate model is that post-map model also includes placement information, and additional timing information in the Standard Delay Format (SDF). initial $sdf_annotate("netgen/map/sim_types_map.sdf"); wire out; wire out1_82; X_LUT6 #( .LOC ( "SLICE_X4Y2" ), .INIT ( 64'hFFFFFFFFFFFFFFFE )) out2 ( .ADR0(user_in_9_IBUF_0), .ADR1(user_in_8_IBUF_0), .ADR2(user_in_11_IBUF_0), .ADR3(user_in_10_IBUF_0), .ADR4(user_in_1_IBUF_0), .ADR5(user_in_0_IBUF_0), .O(out1_82)); X_LUT6 #( .LOC ( "SLICE_X4Y2" ), .INIT ( 64'hFFFFFFFFFFFF0000 )) out3 ( .ADR0(1'b1), .ADR1(1'b1), .ADR2(1'b1), .ADR3(1'b1), .ADR4(out), .ADR5(out1_82), .O(user_out_OBUF_78)); X_LUT6 #( .LOC ( "SLICE_X7Y2" ), .INIT ( 64'hFFFFFFFFFFFFFFFE )) out1 ( .ADR0(user_in_3_IBUF_0), .ADR1(user_in_2_IBUF_0), .ADR2(user_in_5_IBUF_0), .ADR3(user_in_4_IBUF_0), .ADR4(user_in_7_IBUF_0), .ADR5(user_in_6_IBUF_0), .O(out)); Post-map simulation model can be generated using the following command: $ netgen -s 3 -pcf sim_types.pcf -sdf_anno true -sdf_path "netgen/map" -w -dir netgen/map -ofmt verilog -sim sim.ncd post_map.v Post-par simulation model differs from the post-map in that post-par also includes all the routing information. Post-par simulation model can be generated using the following command: $ netgen -s 3 -pcf sim_types.pcf -sdf_anno true -sdf_path "netgen/par" -insert_pp_buffers true -w -dir netgen/par -ofmt verilog -sim sim.ncd post_par.v Post-par simulation model includes all the information to perform an accurate timing simulation. 58. Improving Simulation Performance FPGA design and verification engineers spend a significant part of their time performing functional simulations. For a large FPGA design, running a system level simulation can easily take several hours. If an engineer performs, on average, ten simulations a day that take thirty minutes each, then a 30% speed improvement will allow the performing of fourteen additional simulations of the same design. More simulation turns allow for the achieving of verification goals faster. In general, improving simulation performance involves the following types of changes: - choosing the right simulation type - performing profiling to identify simulation bottlenecks - optimizing device under test, testbench, and simulation models - reducing simulation database size - reducing the number of simulation events - enabling optimization options in simulation tools - reducing verbose and visibility level of a simulated design - following simulation tool best practices - selecting the right simulator, simulation flow, and environment Researching different simulation performance options and implementing them is a long-term effort. It is important to thoroughly document all the findings, establish a set of recommendations, and disseminate and actively enforce them across the design teams. Simulation type Choosing the right simulation type can have a dramatic effect on performance. The performance difference between gate level, RTL, and transaction level simulations is in one, or even two, orders of magnitude. Transaction level simulation is the fastest, because it is compiled into the smallest database and contains the least amount of simulation events. On the other side of the spectrum is gate level simulation, which contains timing, placement, and routing information of the final FPGA design. This point is discussed in more detail in Tip #57. Profiling Simulation profiling is the process of getting detailed information on how the simulation engine is utilizing the CPU. For the duration of the simulation run, profiling utility collects the information on how much time and how many CPU cycles were spent in different design units, or any HDL statement in the profiled code. Profiling results are used to identify design units or code sections that use the most CPU resources and subsequently optimize those sections to improve simulation performance. The profiling process is usually non-intrusive and doesn’t require modification of the source code. The profiling is controlled with compile and simulation options. Device under test code optimizations Designers can use the following methods to optimize device under test (DUT) code. Compiler directives, such as `ifdef SIMULATION or `ifndef SIMULATION, can be used to conditionally enable portions of the code for simulation or synthesis. For example, if the design has several interfaces, such as PCI Express, USB, and Ethernet, and the test case only exercises USB, there is no reason for PCI Express interface and Ethernet MAC code to participate in the simulation. Other candidates for including under conditional compilation are debug modules such as Xilinx Integrated Logic Analyzer (ILA) and Virtual IO (VIO) cores. The effort of implementing conditional compilation directives and tying off large modules is negligible compared with the time gained by decreased simulation runtime. When using conditional compile, it’s important to make sure to exclude files that are not part of the simulation from the filelist. That will also save some compile time. A simple change that significantly reduces simulation time is to shorten or completely bypass device or IP core initialization cycle during the simulation. For example, it might take several milliseconds of simulation time, which takes a very long time for a large design, to perform PCI Express link training, SerDes calibration, or memory controller initialization. Most of the IP cores provide a parameter to bypass or shorten the initialization. Alternatively, designers can use Verilog force statement to force internal signals to certain state. Another optimization is to reduce the period of timers in the design. Timers are used for different purposes; for example, measuring delays or sending periodic events. The circuit might not require simulating a timer with a long period if it produces equivalent results when the timer is using a much lower period. Making more complex code changes to a working design in order to improve simulation performance is not desirable. It might decrease code readability, cause the design not to meet timing constraints, or even introduce new bugs. Testbench optimizations One approach for testbench optimization is raising the level of abstraction. Transaction-level simulations that focus on cycle-based signals and transactions perform faster than event-based RTL that use transitions in time. SystemVerilog defines the clocking block, which is a key element in a cycle-based methodology. A testbench written in Verilog can take advantage of Programming Language Interface (PLI) and the Verilog Procedural Interface (VPI) routines. The PLI/VPI is an extension mechanism that allows functions written in other programming languages to access low- level design information. Carefully designed PLI/VPI extensions can significantly
Recommended publications
  • Prostep Ivip CPO Statement Template
    CPO Statement of Mentor Graphics For Questa SIM Date: 17 June, 2015 CPO Statement of Mentor Graphics Following the prerequisites of ProSTEP iViP’s Code of PLM Openness (CPO) IT vendors shall determine and provide a list of their relevant products and the degree of fulfillment as a “CPO Statement” (cf. CPO Chapter 2.8). This CPO Statement refers to: Product Name Questa SIM Product Version Version 10 Contact Ellie Burns [email protected] This CPO Statement was created and published by Mentor Graphics in form of a self-assessment with regard to the CPO. Publication Date of this CPO Statement: 17 June 2015 Content 1 Executive Summary ______________________________________________________________________________ 2 2 Details of Self-Assessment ________________________________________________________________________ 3 2.1 CPO Chapter 2.1: Interoperability ________________________________________________________________ 3 2.2 CPO Chapter 2.2: Infrastructure _________________________________________________________________ 4 2.3 CPO Chapter 2.5: Standards ____________________________________________________________________ 4 2.4 CPO Chapter 2.6: Architecture __________________________________________________________________ 5 2.5 CPO Chapter 2.7: Partnership ___________________________________________________________________ 6 2.5.1 Data Generated by Users ___________________________________________________________________ 6 2.5.2 Partnership Models _______________________________________________________________________ 6 2.5.3 Support of
    [Show full text]
  • Development of Systemc Modules from HDL for System-On-Chip Applications
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Development of SystemC Modules from HDL for System-on-Chip Applications Siddhartha Devalapalli University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Electrical and Computer Engineering Commons Recommended Citation Devalapalli, Siddhartha, "Development of SystemC Modules from HDL for System-on-Chip Applications. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2119 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Siddhartha Devalapalli entitled "Development of SystemC Modules from HDL for System-on-Chip Applications." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Electrical Engineering. Dr. Donald W. Bouldin, Major Professor We have read this thesis and recommend its acceptance: Dr. Gregory D. Peterson, Dr. Chandra Tan Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Siddhartha Devalapalli entitled "Development of SystemC Modules from HDL for System-on-Chip Applications".
    [Show full text]
  • Irun User Guide
    irun User Guide Product Version 9.2 July 2010 © 1995-2010 Cadence Design Systems, Inc. All rights reserved. Portions © Free Software Foundation, Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation. Used by permission. Printed in the United States of America. Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA. Product NC-SIM contains technology licensed from, and copyrighted by: Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA, and is © 1989, 1991. All rights reserved. Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, and other parties and is © 1989-1994 Regents of the University of California, 1984, the Australian National University, 1990-1999 Scriptics Corporation, and other parties. All rights reserved. Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission. SystemC/HDL mixed-language simulation patent 7424703 was issued on 9/9/2008 Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders. Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties.
    [Show full text]
  • Using the ELECTRIC VLSI Design System Version 9.07
    Using the ELECTRIC VLSI Design System Version 9.07 Steven M. Rubin Author's affiliation: Static Free Software ISBN 0−9727514−3−2 Published by R.L. Ranch Press, 2016. Copyright (c) 2016 Static Free Software Permission is granted to make and distribute verbatim copies of this book provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this book under the conditions for verbatim copying, provided also that they are labeled prominently as modified versions, that the authors' names and title from this version are unchanged (though subtitles and additional authors' names may be added), and that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this book into another language, under the above conditions for modified versions. Electric is distributed by Static Free Software (staticfreesoft.com), a division of RuLabinsky Enterprises, Incorporated. Table of Contents Chapter 1: Introduction.....................................................................................................................................1 1−1: Welcome.........................................................................................................................................1 1−2: About Electric.................................................................................................................................2 1−3: Running
    [Show full text]
  • A Fedora Electronic Lab Presentation
    Chitlesh GOORAH Design & Verification Club Bristol 2010 FUDConBrussels 2007 - [email protected] [ Free Electronic Lab ] (formerly Fedora Electronic Lab) An opensource Design and Simulation platform for Micro-Electronics A one-stop linux distribution for hardware design Marketing means for opensource EDA developers (Networking) From SPEC, Model, Frontend Design, Backend, Development boards to embedded software. FUDConBrussels 2007 - [email protected] Electronic Designers Problems Approx. 6 month design development cycle Tackling Design Complexity Lower Power, Lower Cost and Smaller Space Semiconductor Industry's neck squeezed in 2008 Management (digital/analog) IP Portfolio FUDConBrussels 2007 - [email protected] FUDConBrussels 2007 - [email protected] A basic Design Flow FUDConBrussels 2007 - [email protected] TIP: Use verilator to lint your verilog files. Most of the Veripool tools are available under FEL. They are in sync with Wilson Snyder's releases. FUDConBrussels 2007 - [email protected] FUDConBrussels 2007 - [email protected] GTKWaveGTKWave Don'tDon't forgetforget itsits TCLTCL backendbackend WidelyWidely usedused togethertogether withwith SystemCSystemC FUDConBrussels 2007 - [email protected] Tools Standard Cell libraries FUDConBrussels 2007 - [email protected] BackendBackend designdesign Open Circuit Design, Electric FUDConBrussels 2007 - [email protected], Toped gEDA/gafgEDA/gaf Well known and famous. A very good example of opensource
    [Show full text]
  • Powerplay Power Analysis 8 2013.11.04
    PowerPlay Power Analysis 8 2013.11.04 QII53013 Subscribe Send Feedback The PowerPlay Power Analysis tools allow you to estimate device power consumption accurately. As designs grow larger and process technology continues to shrink, power becomes an increasingly important design consideration. When designing a PCB, you must estimate the power consumption of a device accurately to develop an appropriate power budget, and to design the power supplies, voltage regulators, heat sink, and cooling system. The following figure shows the PowerPlay Power Analysis tools ability to estimate power consumption from early design concept through design implementation. Figure 8-1: PowerPlay Power Analysis From Design Concept Through Design Implementation PowerPlay Early Power Estimator Quartus II PowerPlay Power Analyzer Higher Placement and Simulation Routing Results Results Accuracy Quartus II Design Profile User Input Estimation Design Concept Design Implementation Lower PowerPlay Power Analysis Input For the majority of the designs, the PowerPlay Power Analyzer and the PowerPlay EPE spreadsheet have the following accuracy after the power models are final: • PowerPlay Power Analyzer—±20% from silicon, assuming that the PowerPlay Power Analyzer uses the Value Change Dump File (.vcd) generated toggle rates. • PowerPlay EPE spreadsheet— ±20% from the PowerPlay Power Analyzer results using .vcd generated toggle rates. 90% of EPE designs (using .vcd generated toggle rates exported from PPPA) are within ±30% silicon. The toggle rates are derived using the PowerPlay Power Analyzer with a .vcd file generated from a gate level simulation representative of the system operation. © 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S.
    [Show full text]
  • Simulator for the RV32-Versat Architecture
    Simulator for the RV32-Versat Architecture João César Martins Moutoso Ratinho Thesis to obtain the Master of Science Degree in Electrical and Computer Engineering Supervisor(s): Prof. José João Henriques Teixeira de Sousa Examination Committee Chairperson: Prof. Francisco André Corrêa Alegria Supervisor: Prof. José João Henriques Teixeira de Sousa Member of the Committee: Prof. Marcelino Bicho dos Santos November 2019 ii Declaration I declare that this document is an original work of my own authorship and that it fulfills all the require- ments of the Code of Conduct and Good Practices of the Universidade de Lisboa. iii iv Acknowledgments I want to thank my supervisor, Professor Jose´ Teixeira de Sousa, for the opportunity to develop this work and for his guidance and support during that process. His help was fundamental to overcome the multiple obstacles that I faced during this work. I also want to acknowledge Professor Horacio´ Neto for providing a simple Convolutional Neural Net- work application, used as a basis for the application developed for the RV32-Versat architecture. A special acknowledgement goes to my friends, for their continuous support, and Valter,´ that is developing a multi-layer architecture for RV32-Versat. When everything seemed to be doomed he always had a miraculous solution. Finally, I want to express my sincere gratitude to my family for giving me all the support and encour- agement that I needed throughout my years of study and through the process of researching and writing this thesis. They are also part of this work. Thank you. v vi Resumo Esta tese apresenta um novo ambiente de simulac¸ao˜ para a arquitectura RV32-Versat baseado na ferramenta de simulac¸ao˜ Verilator.
    [Show full text]
  • System-On-Chip Design with Arm® Cortex®-M Processors
    System-on-Chip Design with Arm® Cortex®-M Processors Reference Book JOSEPH YIU System-on-Chip Design with Arm® Cortex®-M Processors System-on-Chip Design with Arm® Cortex®-M Processors Reference Book JOSEPH YIU Arm Education Media is an imprint of Arm Limited, 110 Fulbourn Road, Cambridge, CBI 9NJ, UK Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any other information storage and retrieval system, without permission in writing from the publisher, except under the following conditions: Permissions You may download this book in PDF format from the Arm.com website for personal, non- commercial use only. You may reprint or republish portions of the text for non-commercial, educational or research purposes but only if there is an attribution to Arm Education. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods and professional practices may become necessary. Readers must always rely on their own experience and knowledge in evaluating and using any information, methods, project work, or experiments described herein. In using such information or methods, they should be mindful of their safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent permitted by law, the publisher and the authors, contributors, and editors shall not have any responsibility or liability for any losses, liabilities, claims, damages, costs or expenses resulting from or suffered in connection with the use of the information and materials set out in this textbook.
    [Show full text]
  • Publication Title 1-1962
    publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013
    [Show full text]
  • Bridging the Gap Between Precise RT-Level Power/Timing Estimation and Fast High-Level Simulation
    Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften Department für Informatik Bridging the Gap between Precise RT-Level Power/Timing Estimation and Fast High-Level Simulation A method for automatically identifying and characterising combinational macros in synchronous sequential systems at register-transfer level and subsequent executable high-level model generation with respect to non-functional properties Dissertation zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften von Dipl.-Inform. Kai Hylla Gutachter: Prof. Dr. Wolfgang Nebel Prof. Dr. Wolfgang Rosenstiel Tag der Disputation: 13. Januar 2014 Abstract Knowing a system’s power dissipation and timing behaviour is mandatory for today’s system development and key to an effective design space exploration. Not only does battery lifetime or design of the power supply directly depend on the power dissipation of the system. Second-order effects such as thermal behaviour or degradation effects that are directly or indirectly affected by the power dissipation must be considered, too. Various techniques for power estimation exist at different levels of abstraction. Low-level approaches provide accurate estimation results but require a lot of computational effort. High- level approaches however, allow fast and early estimates, but lack of a deeper knowledge and understanding of the hardware, implementing the behaviour. Therefore, they can only give rough estimates. What is missing is an approach allowing fast and early estimates with respect to as many relevant hardware artefacts and physical properties as possible. This doctoral thesis tackles the problem of a fast, yet accurate power and timing estimation of embedded hardware modules at a high-level of abstraction. A comparatively time consuming low-level estimation is performed once in order to obtain an accurate estimate.
    [Show full text]
  • DIGITAL COMMUNICATION and CONTROL CIRCUITS for 60Ghz
    DIGITAL COMMUNICATION AND CONTROL CIRCUITS FOR 60GHz FULLY INTEGRATED CMOS DIGITAL RADIO A Thesis Presented to The Academic Faculty by Gopal B. Iyer In Partial Fulfillment of Requirements for the Degree Master of Science in School of Electrical and Computer Engineering Georgia Institute of Technology May 2010 COPYRIGHT © 2010 BY GOPAL B. IYER DIGITAL COMMUNICATION AND CONTROL CIRCUITS FOR 60GHz FULLY INTEGRATED CMOS DIGITAL RADIO Approved by: Dr. Joy Laskar, Advisor School of Electrical and Computer Engineering Georgia Institute of Technology Dr. Saibal Mukhopadhyay School of Electrical and Computer Engineering Georgia Institute of Technology Dr. Manos Tentzeris School of Electrical and Computer Engineering Georgia Institute of Technology Date Approved: 2nd April 2010 I dedicate all my research work and the culmination, this thesis: to my Mom, Dad, my sisters, Sheela and Sheetal my brother-in-law, Vinayak, and to the apple of my eye, my nephew, Vivek ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Joy Laskar for his inspiring leadership and guidance throughout the course of my research project. I would also like to express my gratitude to Dr. Saibal Mukhopadhyay and Dr. Manos Tentzeris for taking the time and serving on my reading committee. I wish to acknowledge Dr Stephane Pinel and Dr. Bevin Perumana for providing excellent technical guidance in helping me complete my research work. In particular I would like to thank Dr. Bevin Perumana, for mentoring me in the art of Mixed Signal Design. I wish to thank Dr. Padmanava Sen and Dr. Saikat Sarkar for their constant support and valuable friendship. I take this opportunity to thank all the team members of the Millimeter-Wave Applications Group, who have been a part of this Digital Radio Transceiver project.
    [Show full text]
  • Lattice Radiant Software 1.1 Help
    Lattice Radiant Software 1.1 Help March 29, 2019 Copyright Copyright © 2019 Lattice Semiconductor Corporation. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Lattice Semiconductor Corporation (“Lattice”). Trademarks All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their respective owners. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Lattice may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Lattice makes no commitment to update this documentation. Lattice reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made.
    [Show full text]