Owner's Manual

Total Page:16

File Type:pdf, Size:1020Kb

Owner's Manual PHONES POWER DC USB MIDI IN MIDI OUT MIDI THRU EXPRESSION SUSTAIN L/MONO R OUTPUT CV / GATE MAIN SYSTEMS MASTER CONTROL FILTER CONTROLS INPUTS OUTPUTS 0 0 FILTER BROWSE 1 EXIT FAVORITE MOD 1 MOD 2 PITCH GATE MOD 1 MOD 2 CLOCK FILTER 2 SAVE CUTOFF RESONANCE DRIVE / MORPH ENV 1 LFO 1 ARPEGGIATOR VOICE SYSTEM 1 2 3 4 SETUP MODULE SELECT TEMPO RATCHET CHANCE GATE ENV ENV ENV ENV ENV 1 2 3 4 5 UP & DN ORDER 1 1 32 58 62 PAGE UP / DN RANDOM 2 1 16 54 66 INIT OSC MUTANT MUTANT 1 1 2 DOWN CHORD 3 1 8 52 70 FILTER 5 6 7 8 DELAY UP PHRASE 4 1 4 OFF 75 1 MACRO OSC MUTANT MUTANT MIXER ASSIGN 2 3 4 AMP PRE-FX POST-FX RANDOM FILTER 2 REVERB MASTER MODE OCTAVE DIVISION SWING -10 +10 OSC RING- VOLUME 3 NOISE TAP MOD ON LATCH TRIPLET SHIFT LFO LFO LFO LFO LFO TEMPO HOME MATRIX 1 2 3 4 5 EDIT SUSTAIN PANIC GLIDE RIBBON DOWN UP CHORD OCTAVE MAX MIN Owner’s Manual OUTPUT PEDAL MIDI 12V 1000mA R L/MONO SUSTAIN EXPRESSION THRU OUT IN Special Thanks DESIGN & DIRECTION • Glen Darcey PRODUCT MANAGER • Dominic Au ENGINEERING • Chen Jiejun (engine) • Bob Liao (engine) • Xie Yingchen (software) • Banner Xu (software) • Zhang Huaihe (electronic) • Chen Si (electronic) • Luo Liangsheng (electronic) • Li Qiang (VST) INDUSTRIAL DESIGN • Gao Chao • Long Ping TESTING • Zheng Wei Cheng • Boele Gerkes • Randy Lee • Maria Zhang • Ken “Flux” Pierce • Ed Ten Eyck • Ben Scheffler SOUND DESIGN • Drew Anderson • Glen Darcey • Boele Gerkes • Matt Pike • Dominic Au • Daniel Fisher • Rob Jervons • Ben Scheffler • Jim Cowgill • Mord Fustang • Ken “Flux” Pierce • Paul Schilling MANUAL • Randy Lee (author) • Nancy Lee (design & layout) © Ashun Sound Machines – 2021 – All rights reserved. www.AshunSoundMachines.com Information contained in this manual is subject to change without notice and does not represent a commitment on the part of Ashun Sound Machines. The software described in this manual is provided under the terms of a license agreement or non-disclosure agreement. The software license agreement specifies the terms and conditions for its lawful use. No part of this manual may be reproduced or transmitted in any form or by any purpose other than the purchaser’s personal use, without the express written permission of Ashun Sound Machines. All other products, logos or company names quoted in this manual are trademarks or registered trademarks of their respective owners. 2 Important Safety Instructions Save Your Ears! The product and its software, when used in combination with an amplifier, headphones or speakers, may be able to produce sound levels that could cause permanent hearing loss. DO NOT operate for long periods of time at a high level or at a level that is uncomfortable. If you encounter any hearing loss or ringing in the ears, please consult an audiologist. Precautions Include, but Are Not Limited to, the Following: 1. Read and understand all the instructions. 7. Do not open or insert anything into the 2. Always follow the instructions on the device that may cause a fire or electrical instrument. shock. 3. Before cleaning the device, always 8. Do not spill any kind of liquid onto the remove the USB and DC cable. When device. cleaning, use a soft and dry cloth. Do 9. Always take the device to a qualified not use gasoline, alcohol, acetone, service center. You will invalidate your turpentine or any other organic warranty if you open and remove the solutions; do not use a liquid cleaner, cover, and improper assembly may cause spray or cloth that’s too wet. electrical shock or other malfunctions. 4. Do not use the device near water or 10. Do not use the device with thunder and moisture, such as a bathtub, sink, lightning present; it may cause electrical swimming pool or similar place. shock. 5. Do not place the device in an unstable 11. Do not expose the device to hot position where it might accidentally fall sunlight. over. 12. Do not use the device when there is a 6. Do not place heavy objects on the gas leak nearby. device. Do not block openings or vents 13. Ashun Sound Machines is not of the device; these locations are used responsible for any damage or data loss for air circulation to prevent the device caused by improper operation of the from overheating. Do not place the device. device near a heat vent at any location with poor air circulation. Specifications Subject to Change The information contained in this manual is believed to be correct at the time of printing. However, Ashun Sound Machines reserves the right to change or modify any of the specifica- tions without notice or obligation to update the hardware that has been purchased. Before Requesting Service... Please study this manual carefully and consult your dealer before requesting service. Service charges incurred due to a lack of knowledge relating to how a function or feature works (when the product is operating as designed) are not covered by the manufacturer’s warranty, and are therefore the owner’s responsibility. 3 Contents Important Safety Instructions . 3 The RANDOM button.....................17 The SHIFT button .........................18 Welcome to Hydrasynth! . .8 Master Control Section . 18 Main Features . .8 EXIT button ...............................18 User interface..............................8 VOICE button .............................19 Patch features . .8 PAGE Up / Down buttons.................19 Sound engine..............................8 MACRO ASSIGN button...................19 Effects . .9 MOD MATRIX button . .19 Hardware . 9 CV/Gate Section . 19 Keyboard-specific Features . 9 Arpeggiator Section . .20 Desktop-specific Features . .9 Filter Controls.............................20 Quick Start Guide . .10 Module Select . 20 Inside the Box . 10 Performance Controls . .20 Save Your Receipt! . 10 Chord mode (keyboard only) .............21 Plug It In...................................10 Ribbon controller (keyboard only)........21 Power .....................................10 Front Panel (keyboard only) . 21 Audio . .10 Headphone jacks . .21 USB . .10 Phones volume control ...................21 MIDI . 10 Rear Panel.................................22 CV/Gate ...................................11 Outputs...................................22 Make Some Noise! . .11 Control Inputs . 22 Select Patches . 11 MIDI . 23 Octave shift...............................11 USB . .23 Arpeggiator basics........................11 Power .....................................23 Tweaking the sounds . 12 Kensington lock . 23 Saving . 12 Hydrasynth Desktop . 24 Check for Updates . .13 Attaching the Rack Ears . .24 That’s Enough Reading for Now. .13 SHIFT + Pad Functions...................24 Overview ................................14 Pad Scale selection . .24 Top Panel: Hydrasynth Keyboard . 14 Octave Transpose.........................24 Top Panel: Hydrasynth Desktop ........14 Changing the Pad Key . 25 General Concepts . 15 Pad response options.....................25 Access buttons . .15 Pad Modes................................26 Function buttons . .15 Pad Mode examples ......................27 Control knobs . 15 Pad Scale vs. Voice Scale..................29 Control buttons...........................15 Pad Notes and MIDI Notes................29 Module Select buttons . .15 Pad Notes vs. Key Lock....................29 Knob types . .16 Understanding the Modules...30 The displays . 16 Module Groups...........................30 Main Systems .............................16 Oscillator group . 30 The HOME button . 17 Mixer module.............................30 The SAVE button..........................17 Filter group . .30 System Setup . 17 Envelope group...........................30 The INIT button...........................17 LFO group . 30 4 Amp module . .31 Filter 2 . .46 FX group..................................31 Filter 2 parameters........................46 Other Modules . .31 The Amp Module . 47 Voice module .............................31 How the Parameters Interact . .47 Ribbon (keyboard only) . 31 LFO 2 Amount . 47 Module Shortcuts . 31 Velocity ...................................47 Create Mod routes........................31 Amp Level . 47 Select Macro Destinations ................32 Copy / Paste settings . .32 The Envelopes . 48 What’s an Envelope? .....................48 . 33 The Oscillator Group Envelope features.........................48 Oscillators 1 and 2........................33 Envelopes 1 and 2 . 48 Switching modes . .33 Envelope parameters: page 1.............49 Single mode . 33 Envelope parameters: page 2.............50 WaveScan mode..........................34 Envelope parameters: page 3.............51 Oscillator 3 ................................34 Envelope Shortcuts . 52 Mutants 1–4 . 35 Copy Env A to Env B . 52 FM-Lin . 35 Create a direct Mod route . 52 WavStack . .36 OSC Sync . .36 The LFOs.................................53 About Ratio...............................36 What’s an LFO? . .53 Window...................................36 LFO features . 53 Pulse Width modulation ..................37 LFOs 1 and 2 ..............................53 PW-Orig . 37 LFO parameters: page 1 . 53 PW-Sqeez .................................37 LFO parameters: page 2 . 55 PW-ASM [Warp]...........................37 LFO Shortcuts.............................57 Harmonic . .38 Copy LFO A to LFO B......................57 PhazDiff...................................39 Create a direct Mod route . 57 Ring-Noise Module . 39 The Effects..............................58 Waveform List . 40 Pre- and Post-FX..........................58 The Mixer Module . 41 Bypass . 58 Setting Levels.............................41
Recommended publications
  • Chords and Scales 30/09/18 3:21 PM
    Chords and Scales 30/09/18 3:21 PM Chords Charts written by Mal Webb 2014-18 http://malwebb.com Name Symbol Alt. Symbol (best first) Notes Note numbers Scales (in order of fit). C major (triad) C Cmaj, CM (not good) C E G 1 3 5 Ion, Mix, Lyd, MajPent, MajBlu, DoHar, HarmMaj, RagPD, DomPent C 6 C6 C E G A 1 3 5 6 Ion, MajPent, MajBlu, Lyd, Mix C major 7 C∆ Cmaj7, CM7 (not good) C E G B 1 3 5 7 Ion, Lyd, DoHar, RagPD, MajPent C major 9 C∆9 Cmaj9 C E G B D 1 3 5 7 9 Ion, Lyd, MajPent C 7 (or dominant 7th) C7 CM7 (not good) C E G Bb 1 3 5 b7 Mix, LyDom, PhrDom, DomPent, RagCha, ComDim, MajPent, MajBlu, Blues C 9 C9 C E G Bb D 1 3 5 b7 9 Mix, LyDom, RagCha, DomPent, MajPent, MajBlu, Blues C 7 sharp 9 C7#9 C7+9, C7alt. C E G Bb D# 1 3 5 b7 #9 ComDim, Blues C 7 flat 9 C7b9 C7alt. C E G Bb Db 1 3 5 b7 b9 ComDim, PhrDom C 7 flat 5 C7b5 C E Gb Bb 1 3 b5 b7 Whole, LyDom, SupLoc, Blues C 7 sharp 11 C7#11 Bb+/C C E G Bb D F# 1 3 5 b7 9 #11 LyDom C 13 C 13 C9 add 13 C E G Bb D A 1 3 5 b7 9 13 Mix, LyDom, DomPent, MajBlu, Blues C minor (triad) Cm C-, Cmin C Eb G 1 b3 5 Dor, Aeo, Phr, HarmMin, MelMin, DoHarMin, MinPent, Ukdom, Blues, Pelog C minor 7 Cm7 Cmin7, C-7 C Eb G Bb 1 b3 5 b7 Dor, Aeo, Phr, MinPent, UkDom, Blues C minor major 7 Cm∆ Cm maj7, C- maj7 C Eb G B 1 b3 5 7 HarmMin, MelMin, DoHarMin C minor 6 Cm6 C-6 C Eb G A 1 b3 5 6 Dor, MelMin C minor 9 Cm9 C-9 C Eb G Bb D 1 b3 5 b7 9 Dor, Aeo, MinPent C diminished (triad) Cº Cdim C Eb Gb 1 b3 b5 Loc, Dim, ComDim, SupLoc C diminished 7 Cº7 Cdim7 C Eb Gb A(Bbb) 1 b3 b5 6(bb7) Dim C half diminished Cø
    [Show full text]
  • 3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
    3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch.
    [Show full text]
  • Download the Just Intonation Primer
    THE JUST INTONATION PPRIRIMMEERR An introduction to the theory and practice of Just Intonation by David B. Doty Uncommon Practice — a CD of original music in Just Intonation by David B. Doty This CD contains seven compositions in Just Intonation in diverse styles — ranging from short “fractured pop tunes” to extended orchestral movements — realized by means of MIDI technology. My principal objectives in creating this music were twofold: to explore some of the novel possibilities offered by Just Intonation and to make emotionally and intellectually satisfying music. I believe I have achieved both of these goals to a significant degree. ——David B. Doty The selections on this CD pro­­cess—about synthesis, decisions. This is definitely detected in certain struc- were composed between sampling, and MIDI, about not experimental music, in tures and styles of elabora- approximately 1984 and Just Intonation, and about the Cageian sense—I am tion. More prominent are 1995 and recorded in 1998. what compositional styles more interested in result styles of polyphony from the All of them use some form and techniques are suited (aesthetic response) than Western European Middle of Just Intonation. This to various just tunings. process. Ages and Renaissance, method of tuning is com- Taken collectively, there It is tonal music (with a garage rock from the 1960s, mendable for its inherent is no conventional name lowercase t), music in which Balkan instrumental dance beauty, its variety, and its for the music that resulted hierarchic relations of tones music, the ancient Japanese long history (it is as old from this process, other are important and in which court music gagaku, Greek as civilization).
    [Show full text]
  • Helmholtz's Dissonance Curve
    Tuning and Timbre: A Perceptual Synthesis Bill Sethares IDEA: Exploit psychoacoustic studies on the perception of consonance and dissonance. The talk begins by showing how to build a device that can measure the “sensory” consonance and/or dissonance of a sound in its musical context. Such a “dissonance meter” has implications in music theory, in synthesizer design, in the con- struction of musical scales and tunings, and in the design of musical instruments. ...the legacy of Helmholtz continues... 1 Some Observations. Why do we tune our instruments the way we do? Some tunings are easier to play in than others. Some timbres work well in certain scales, but not in others. What makes a sound easy in 19-tet but hard in 10-tet? “The timbre of an instrument strongly affects what tuning and scale sound best on that instrument.” – W. Carlos 2 What are Tuning and Timbre? 196 384 589 amplitude 787 magnitude sample: 0 10000 20000 30000 0 1000 2000 3000 4000 time: 0 0.23 0.45 0.68 frequency in Hz Tuning = pitch of the fundamental (in this case 196 Hz) Timbre involves (a) pattern of overtones (Helmholtz) (b) temporal features 3 Some intervals “harmonious” and others “discordant.” Why? X X X X 1.06:1 2:1 X X X X 1.89:1 3:2 X X X X 1.414:1 4:3 4 Theory #1:(Pythagoras ) Humans naturally like the sound of intervals de- fined by small integer ratios. small ratios imply short period of repetition short = simple = sweet Theory #2:(Helmholtz ) Partials of a sound that are close in frequency cause beats that are perceived as “roughness” or dissonance.
    [Show full text]
  • A Study of Microtones in Pop Music
    University of Huddersfield Repository Chadwin, Daniel James Applying microtonality to pop songwriting: A study of microtones in pop music Original Citation Chadwin, Daniel James (2019) Applying microtonality to pop songwriting: A study of microtones in pop music. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/34977/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Applying microtonality to pop songwriting A study of microtones in pop music Daniel James Chadwin Student number: 1568815 A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Master of Arts University of Huddersfield May 2019 1 Abstract While temperament and expanded tunings have not been widely adopted by pop and rock musicians historically speaking, there has recently been an increased interest in microtones from modern artists and in online discussion.
    [Show full text]
  • Course Name : Indonesian Cultural Arts – Karawitan (Seni Budaya
    Course Name : Indonesian Cultural Arts – Karawitan (Seni Budaya Indonesia – Karawitan) Course Code / Credits : BDU 2303/ 3 SKS Teaching Period : January-June Semester Language Instruction : Indonesian Department : Sastra Nusantara Faculty : Faculty of Arts and Humanities (FIB) Course Description The course of Indonesian Cultural Arts (Karawitan) is a compulsory course for (regular) students of Faculty of Cultural Sciences Universitas Gadjah Mada, especially for the first and second semesters. The course is held every semester and is offered and can be taken by every student from semester 1 to 2. There are no prerequisites for Karawitan courses. The position of Indonesian Culture Arts (Karawitan) as the compulsory course serves to introduce the students to one aspect of Indonesian (or Javanese) art and culture and the practical knowledge related to the performance of traditional Javanese musical instruments, namely gamelan. This course also aims to provide both introduction and theoretical and practical understanding for the students of the Faculty of Cultural Science on gamelan instrument techniques, namely gendhing technique, that is found in Karawitan. Topics in this course include identification of Javanese gamelan instruments, exploration of tones in Javanese gamelan, gendhing instrument method and practice, as well as observation of traditional art performances. Proportionally, 30% of these courses contains briefing theoretical insights, 40% contains gamelan practice, and 30% contains provision of experience in a form of group collaboration and interaction Course Objectives The course of Indonesian Culture Arts (Karawitan) in general aims to provide theoretical and practical supplies through skill, application, and carefulness to recognize various instruments of Gamelan. Through this course, students are observant in identifying the various instruments of the gamelan and its application as instrumental and vocal art in karawitan.
    [Show full text]
  • Tuning: at the Grcssroads
    WendyGarloo ?O. Box1024 Tuning:At the New YorkCit, New York 10276USA Grcssroads lntrodrciion planned the construction of instruments that per- formed within the new "tunitrg of choice," and all The arena o{ musical scales and tuning has cer_ publishedpapers or books demonstretingthe supe- tainly not been a quiet place to be for the past thlee dority of their new scales in at least some way over hundred yeals. But it might iust as well have beenif €qual temperament.The tradition has continued we iudge by the results: the same 12V2 equally with Yunik and Swi{t {1980),Blackwood (1982),and temperedscale established then as the best avail- the presentauthor (Milano 1986),and shows no able tuning compromise, by J. S. Bach and many sign of slowing down despite the apparent apathy otheis lHelrnholtz 1954j Apel 1972),remains to with which the musical mainstream has regularly this day essentially the only scale heard in Westem grceted eech new proposal. music. That monopoly crossesall musical styles, of course therc's a perf€ctly reasonable explana- {rom the most contemporary of jazz and av^rf,t' tion lor the mainstream's evident preferetrce to rc- "rut-bound" gardeclassical, and musical masteeieces from the main when by now there are at least past, to the latest technopop rock with fancy s)'n- a dozen clearly better-sounding ways to tune our thesizers,and everwvherein between.Instruments scales,i{ only for at least part of the time: it re' ol the symphonyorchestra a((empr with varyirrg quires a lot of effort ol several kinds. I'm typing this deSreesof successto live up ro lhe 100-centsemi manuscript using a Dvorak keyboard (lor the ffrst tone, even though many would find it inherently far time!), and I assureyou it's not easyto unlearn the easierto do otherwise: the stdngs to "lapse" into QWERTY habits of a lifetime, even though I can Pythagoieen tuning, the brass into several keys of akeady feel the actual superiodty of this unloved lust irtonation lBarbour 1953).And th€se easily but demonstrablv better kevboard.
    [Show full text]
  • Divisions of the Tetrachord Are Potentially Infinite in Number
    EDITOR'S INTRODUCTION ''''HEN I WAS A young student in California, Lou Harrison suggested that I send one of my first pieces, Piano Study #5 (forJPR) to a Dr. Chalmers, who might publish it in his journal Xenbarmonikon. Flattered and fascinated, I did, and John did, and thus began what is now my twenty year friendship with this polyglot fungus researcher tuning guru science fiction devotee and general everything expert. Lou first showed me the box of papers, already called Divisions ofthe Tetracbord, in 1975. I liked the idea of this grand, obsessive project, and felt that it needed to be availablein a way that was, likeJohn himself, out of the ordinary. When Jody Diamond, Alexis Alrich, and I founded Frog Peak Music (A Composers' Collective) in the early 80S, Divisions (along with Tenney's then unpublished Meta + Hodos) was in my mind as one of the publishing collective's main reasons for existing, and for calling itself a publisher of"speculative theory." The publication of this book has been a long and arduous process. Re­ vised manuscripts traveled with me from California to Java and Sumatra (John requested we bring him a sample of the local fungi), and finally to our new home in New Hampshire. The process of writing, editing, and pub­ lishing it has taken nearly fifteen years, and spanned various writing tech­ nologies. (When John first started using a word processor, and for the first time his many correspondents could actually read his long complicated letters, my wife and I were a bit sad-we had enjoyed reading his com­ pletely illegible writing aloud as a kind of sound poetry).
    [Show full text]
  • Tuning, Tonality, and 22-Tone Temperament
    Tuning, Tonality, and Twenty-Two-Tone Temperament Paul Erlich ([email protected]) (originally published in Xenharmonikôn 17, Spring 1998; revised 4/2/02) Introduction Western modal and tonal music generally conforms to what is known as the 5-limit; this is often explained (e. g., by Hindemith) by stating that the entire tuning system is an expression of integer frequency ratios using prime factors no higher than 5. A more correct description is that all 5-limit intervals, or ratios involving numbers no higher than 5, aside from factors of 2 arising from inversion and extension, are treated as consonances in this music, and thus need to be tuned with some degree of accuracy. The diatonic scale of seven notes per octave has been in use since ancient Greek times, when harmonic simultaneities (other than unisons and octaves) were not used and the only important property of the scale was its melodic structure. As melodic considerations continued to play a dominant role in Western musical history, scales other than the diatonic had very limited application, and harmonic usage was intimately entangled with diatonic scale structure. It is fortuitous that the diatonic scale allowed for many harmonies that displayed the psychoacoustic phenomenon of consonance, defined by small- integer frequency ratios, as well as many that did not. Medieval music conformed to the 3-limit, the only recognized consonances being the octave (2:1) and the perfect fifth (3:2) (plus, of course, their octave inversions and extensions, obtained by dividing or multiplying the ratios by powers of 2; this “octave equivalence” will be implicit from here on.1) The diatonic scales were therefore tuned as a chain of consecutive 3:2s (Pythagorean tuning).
    [Show full text]
  • Kraig Grady [Personal Data Omitted] [email protected]
    Kraig Grady [personal data omitted] [email protected] EDUCATION MCA-R Visual arts. Faculty of Law, Humanities and the Arts, University of Wollongong, 2014. John Cage mentions in one of his books of a student who went from school to school, finding the best teachers, taking their classes and then going on to other schools. This had a great impact on my young idealist mind and led me through a nine-year excursion through the following institutions: Los Angeles City College, California State Northridge, University of California Los Angeles, and finally Immaculate Heart College. Privately, I studied briefly with composers Nicolas Slonimsky, Dorrance Stalvey and more extensively with Byong-Kon Kim. This was in conjunction with years spent in libraries (downtown and UCLA). My studies with tuning theorist Erv Wilson were the longest, investigating microtonality, both in historical and cultural contexts, as well as the potential of unique scale designs and structures. EMPLOYMENT Casual lecturer in performance, Faculty of Creative Arts, University of Wollongong, 2008-2011. Subjects taught: THEA390, SCMP321, SCMP322. Scenic artist for various television stations, scenic companies and movie studios in Hollywood, including ABC, PBS, KTTV, KHJ, KTLA, Professional Scenery, etc, 1974-2005. Journeyman working on films such as Francis Ford Coppola’s One From The Heart, Brian De Palma’s Body Double, as well as various PBS productions, 1982-2005. ARTISTIC ACTIVITIES Composer/Performer/Instrument-Builder/Sound Artist All my music involves various microtonal tunings, 1975-present. Shadow Theatre Director Directed, produced, wrote, and scored eight shadow plays. I also made and operated 28 puppets that run the gamut from traditional sources to original designs.
    [Show full text]
  • Module 4/Melody,Harmony,Texture
    Module 4- Melody, Harmony and Texture Pitch in music refers to vibrations of sound waves. These vibrations are measured in hertz (cycles per second). Therefore a musical pitch is a sound produced at a certain number of cycles per second (Wade, 2013). The faster the vibration, the higher the resulting pitch. Likewise, the slower the rate of vibration, the lower the pitch. Musical tones can be divided into two cateGories: determinate and indeterminate pitch. Musical pitches contain a mixture of sound waves. The one that dominates the sound is referred to as the “fundamental” pitch. All of the other waves that are produced by a pitch are referred to (in the music world) as overtones. When a pitch has a set of overtones that allow a fundamental note to dominate the sound it is a determinate pitch. Indeterminate pitch happens when the overtones of a note are not in aliGnment or there are conflictinG fundamentals and therefore no “one” vibration dominates the sound. Another way to think about this concept is to know that instruments that have determinate pitch play notes that are typically Given names (letter, number or solfeGe). Determinate pitch instruments include (but are not limited to): voice, piano, Guitar, marimba, woodwinds, brass, chordophones, etc.… Indeterminate pitch instruments are instruments like Gamelan GonGs, snare drums, cymbals, trianGle, etc… These instruments are Generally used to keep a rhythm, to accent, or to add color. When a pitch has a set of overtones that vibrate alonG with the fundamental in simple ratios (see Figure 2) then it makes a harmonic pitch.
    [Show full text]
  • Foundations in Music Psychology
    Foundations in Music Psy chol ogy Theory and Research edited by Peter Jason Rentfrow and Daniel J. Levitin The MIT Press Cambridge, Mas sa chu setts London, England © 2019 Mas sa chu setts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was set in Stone Serif by Westchester Publishing Ser vices. Printed and bound in the United States of Amer i ca. Library of Congress Cataloging- in- Publication Data Names: Rentfrow, Peter J. | Levitin, Daniel J. Title: Foundations in music psy chol ogy : theory and research / edited by Peter Jason Rentfrow and Daniel J. Levitin. Description: Cambridge, MA : The MIT Press, 2019. | Includes bibliographical references and index. Identifiers: LCCN 2018018401 | ISBN 9780262039277 (hardcover : alk. paper) Subjects: LCSH: Music— Psychological aspects. | Musical perception. | Musical ability. Classification: LCC ML3830 .F7 2019 | DDC 781.1/1— dc23 LC rec ord available at https:// lccn . loc . gov / 2018018401 10 9 8 7 6 5 4 3 2 1 Contents I Music Perception 1 Pitch: Perception and Neural Coding 3 Andrew J. Oxenham 2 Rhythm 33 Henkjan Honing and Fleur L. Bouwer 3 Perception and Cognition of Musical Timbre 71 Stephen McAdams and Kai Siedenburg 4 Pitch Combinations and Grouping 121 Frank A. Russo 5 Musical Intervals, Scales, and Tunings: Auditory Repre sen ta tions and Neural Codes 149 Peter Cariani II Music Cognition 6 Musical Expectancy 221 Edward W. Large and Ji Chul Kim 7 Musicality across the Lifespan 265 Sandra E.
    [Show full text]