Tuning, Tonality, and 22-Tone Temperament
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
4. Non-Heptatonic Modes
Tagg: Everyday Tonality II — 4. Non‐heptatonic modes 151 4. Non‐heptatonic modes If modes containing seven different scale degrees are heptatonic, eight‐note modes are octatonic, six‐note modes hexatonic, those with five pentatonic, while four‐ and three‐note modes are tetratonic and tritonic. Now, even though the most popular pentatonic modes are sometimes called ‘gapped’ because they contain two scale steps larger than those of the ‘church’ modes of Chapter 3 —doh ré mi sol la and la doh ré mi sol, for example— they are no more incomplete FFBk04Modes2.fm. 2014-09-14,13:57 or empty than the octatonic start to example 70 can be considered cluttered or crowded.1 Ex. 70. Vigneault/Rochon (1973): Je chante pour (octatonic opening phrase) The point is that the most widespread convention for numbering scale degrees (in Europe, the Arab world, India, Java, China, etc.) is, as we’ve seen, heptatonic. So, when expressions like ‘thirdless hexatonic’ occur in this chapter it does not imply that the mode is in any sense deficient: it’s just a matter of using a quasi‐global con‐ vention to designate a particular trait of the mode. Tritonic and tetratonic Tritonic and tetratonic tunes are common in many parts of the world, not least in traditional music from Micronesia and Poly‐ nesia, as well as among the Māori, the Inuit, the Saami and Native Americans of the great plains.2 Tetratonic modes are also found in Christian psalm and response chanting (ex. 71), while the sound of children chanting tritonic taunts can still be heard in playgrounds in many parts of the world (ex. -
Tonality in My Molto Adagio
Estonian Academy of Music and Theatre Jorge Gómez Rodríguez Constructing Tonality in Molto Adagio A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Music) Supervisor: Prof. Mart Humal Tallinn 2015 Abstract The focus of this paper is the analysis of the work for string ensemble entitled And Silence Eternal - Molto Adagio (Molto Adagio for short), written by the author of this thesis. Its originality lies in the use of a harmonic approach which is referred to as System of Harmonic Classes in this thesis. Owing to the relatively unconventional employment of otherwise traditional harmonic resources in this system, a preliminary theoretical framework needs to be put in place in order to construct an alternative tonal approach that may describe the pitch structure of the Molto Adagio. This will be the aim of Part 1. For this purpose, analytical notions such as symmetric pair, primary dominant factor, harmonic domain, and harmonic area will be introduced before the tonal character of the piece (or the extent to which Molto Adagio may be said to be tonal) can be assessed. A detailed description of how the composer envisions and constructs the system will follow, with special consideration to the place the major diatonic scale occupies in relation to it. Part 2 will engage in an analysis of the piece following the analytical directives gathered in Part 1. The concept of modular tonality, which incorporates the notions of harmonic area and harmonic classes, will be put forward as a heuristic term to account for the use of a linear analytical approach. -
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
Kūnqǔ in Practice: a Case Study
KŪNQǓ IN PRACTICE: A CASE STUDY A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THEATRE OCTOBER 2019 By Ju-Hua Wei Dissertation Committee: Elizabeth A. Wichmann-Walczak, Chairperson Lurana Donnels O’Malley Kirstin A. Pauka Cathryn H. Clayton Shana J. Brown Keywords: kunqu, kunju, opera, performance, text, music, creation, practice, Wei Liangfu © 2019, Ju-Hua Wei ii ACKNOWLEDGEMENTS I wish to express my gratitude to the individuals who helped me in completion of my dissertation and on my journey of exploring the world of theatre and music: Shén Fúqìng 沈福庆 (1933-2013), for being a thoughtful teacher and a father figure. He taught me the spirit of jīngjù and demonstrated the ultimate fine art of jīngjù music and singing. He was an inspiration to all of us who learned from him. And to his spouse, Zhāng Qìnglán 张庆兰, for her motherly love during my jīngjù research in Nánjīng 南京. Sūn Jiàn’ān 孙建安, for being a great mentor to me, bringing me along on all occasions, introducing me to the production team which initiated the project for my dissertation, attending the kūnqǔ performances in which he was involved, meeting his kūnqǔ expert friends, listening to his music lessons, and more; anything which he thought might benefit my understanding of all aspects of kūnqǔ. I am grateful for all his support and his profound knowledge of kūnqǔ music composition. Wichmann-Walczak, Elizabeth, for her years of endeavor producing jīngjù productions in the US. -
Development of Musical Scales in Europe
RABINDRA BHARATI UNIVERSITY VOCAL MUSIC DEPARTMENT COURSE - B.A. ( Compulsory Course ) (CBCS) 2020 Semester - II , Paper - I Teacher - Sri Partha Pratim Bhowmik History of Western Music Development of musical scales in Europe In the 8th century B.C., The musical atmosphere of ancient Greece introduced its development by the influence of then popular aristocratic music. That music was melody- based and the root of that music was rural folk-songs. In each and every country, the development of music was rooted in the folk-songs. The European Aristocratic Music of the Christian Era had been inspired by the developed Greek music. In the 5th century B.C. the renowned Greek Mathematician Pythagoras had first established a relation between science and music. Before him, the scale of Greek music was pentatonic. Pythagoras changed the scale into hexatonic pattern and later into heptatonic pattern. Greek musicians applied the alphabets to indicate the notes of their music. For the natural notes they used the alphabets in normal position and for the deformed notes, the alphabets turned upside down [deformed notes= Vikrita svaras]. The musical instruments, they had invented are – Aulos, Salpinx, pan-pipes, harp, lyre, syrinx etc. In the western music, the term ‘scale’ is derived from Latin word ‘scala’, ie, the ladder; scale means an ascent or descent formation of the musical notes. Each and every scale has a starting note, called ‘tonic note’ [‘tone - tonic’ not the Health-Tonic]. In the Ancient Greece, the musical scale had been formed with the help of lyre , a string instrument, having normally 5 or 6 or 7 strings. -
3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch. -
Unified Music Theories for General Equal-Temperament Systems
Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories. -
Nora-Louise Müller the Bohlen-Pierce Clarinet An
Nora-Louise Müller The Bohlen-Pierce Clarinet An Introduction to Acoustics and Playing Technique The Bohlen-Pierce scale was discovered in the 1970s and 1980s by Heinz Bohlen and John R. Pierce respectively. Due to a lack of instruments which were able to play the scale, hardly any compositions in Bohlen-Pierce could be found in the past. Just a few composers who work in electronic music used the scale – until the Canadian woodwind maker Stephen Fox created a Bohlen-Pierce clarinet, instigated by Georg Hajdu, professor of multimedia composition at Hochschule für Musik und Theater Hamburg. Hence the number of Bohlen- Pierce compositions using the new instrument is increasing constantly. This article gives a short introduction to the characteristics of the Bohlen-Pierce scale and an overview about Bohlen-Pierce clarinets and their playing technique. The Bohlen-Pierce scale Unlike the scales of most tone systems, it is not the octave that forms the repeating frame of the Bohlen-Pierce scale, but the perfect twelfth (octave plus fifth), dividing it into 13 steps, according to various mathematical considerations. The result is an alternative harmonic system that opens new possibilities to contemporary and future music. Acoustically speaking, the octave's frequency ratio 1:2 is replaced by the ratio 1:3 in the Bohlen-Pierce scale, making the perfect twelfth an analogy to the octave. This interval is defined as the point of reference to which the scale aligns. The perfect twelfth, or as Pierce named it, the tritave (due to the 1:3 ratio) is achieved with 13 tone steps. -
Electrophonic Musical Instruments
G10H CPC COOPERATIVE PATENT CLASSIFICATION G PHYSICS (NOTES omitted) INSTRUMENTS G10 MUSICAL INSTRUMENTS; ACOUSTICS (NOTES omitted) G10H ELECTROPHONIC MUSICAL INSTRUMENTS (electronic circuits in general H03) NOTE This subclass covers musical instruments in which individual notes are constituted as electric oscillations under the control of a performer and the oscillations are converted to sound-vibrations by a loud-speaker or equivalent instrument. WARNING In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme. 1/00 Details of electrophonic musical instruments 1/053 . during execution only {(voice controlled (keyboards applicable also to other musical instruments G10H 5/005)} instruments G10B, G10C; arrangements for producing 1/0535 . {by switches incorporating a mechanical a reverberation or echo sound G10K 15/08) vibrator, the envelope of the mechanical 1/0008 . {Associated control or indicating means (teaching vibration being used as modulating signal} of music per se G09B 15/00)} 1/055 . by switches with variable impedance 1/0016 . {Means for indicating which keys, frets or strings elements are to be actuated, e.g. using lights or leds} 1/0551 . {using variable capacitors} 1/0025 . {Automatic or semi-automatic music 1/0553 . {using optical or light-responsive means} composition, e.g. producing random music, 1/0555 . {using magnetic or electromagnetic applying rules from music theory or modifying a means} musical piece (automatically producing a series of 1/0556 . {using piezo-electric means} tones G10H 1/26)} 1/0558 . {using variable resistors} 1/0033 . {Recording/reproducing or transmission of 1/057 . by envelope-forming circuits music for electrophonic musical instruments (of 1/0575 . -
Download the Just Intonation Primer
THE JUST INTONATION PPRIRIMMEERR An introduction to the theory and practice of Just Intonation by David B. Doty Uncommon Practice — a CD of original music in Just Intonation by David B. Doty This CD contains seven compositions in Just Intonation in diverse styles — ranging from short “fractured pop tunes” to extended orchestral movements — realized by means of MIDI technology. My principal objectives in creating this music were twofold: to explore some of the novel possibilities offered by Just Intonation and to make emotionally and intellectually satisfying music. I believe I have achieved both of these goals to a significant degree. ——David B. Doty The selections on this CD process—about synthesis, decisions. This is definitely detected in certain struc- were composed between sampling, and MIDI, about not experimental music, in tures and styles of elabora- approximately 1984 and Just Intonation, and about the Cageian sense—I am tion. More prominent are 1995 and recorded in 1998. what compositional styles more interested in result styles of polyphony from the All of them use some form and techniques are suited (aesthetic response) than Western European Middle of Just Intonation. This to various just tunings. process. Ages and Renaissance, method of tuning is com- Taken collectively, there It is tonal music (with a garage rock from the 1960s, mendable for its inherent is no conventional name lowercase t), music in which Balkan instrumental dance beauty, its variety, and its for the music that resulted hierarchic relations of tones music, the ancient Japanese long history (it is as old from this process, other are important and in which court music gagaku, Greek as civilization). -
Mto.99.5.2.Soderberg
Volume 5, Number 2, March 1999 Copyright © 1999 Society for Music Theory Stephen Soderberg REFERENCE: MTO Vol. 4, No. 3 KEYWORDS: John Clough, Jack Douthett, David Lewin, maximally even set, microtonal music, hyperdiatonic system, Riemann system ABSTRACT: This article is a continuation of White Note Fantasy, Part I, published in MTO Vol. 4, No. 3 (May 1998). Part II combines some of the work done by others on three fundamental aspects of diatonic systems: underlying scale structure, harmonic structure, and basic voice leading. This synthesis allows the recognition of select hyperdiatonic systems which, while lacking some of the simple and direct character of the usual (“historical”) diatonic system, possess a richness and complexity which have yet to be fully exploited. II. A Few Hypertonal Variations 5. Necklaces 6. The usual diatonic as a model for an abstract diatonic system 7. An abstract diatonic system 8. Riemann non-diatonic systems 9. Extension of David Lewin’s Riemann systems References 5. Necklaces [5.1] Consider a symmetric interval string of cardinality n = c+d which contains c interval i’s and d interval j’s. If the i’s and j’s in such a string are additionally spaced as evenly apart from one another as possible, we will call this string a “necklace.” If s is a string in Cn and p is an element of Cn, then the structure ps is a “necklace set.” Thus <iijiij>, <ijijij>, and <ijjijjjijjj> are necklaces, but <iijjii>, <jiijiij>, and <iijj>, while symmetric, are not necklaces. i and j may also be equal, so strings of the 1 of 18 form <iii...> are valid necklaces. -
Teaching Guide: Area of Study 7
Teaching guide: Area of study 7 – Art music since 1910 This resource is a teaching guide for Area of Study 7 (Art music since 1910) for our A-level Music specification (7272). Teachers and students will find explanations and examples of all the musical elements required for the Listening section of the examination, as well as examples for listening and composing activities and suggestions for further listening to aid responses to the essay questions. Glossary The list below includes terms found in the specification, arranged into musical elements, together with some examples. Melody Modes of limited transposition Messiaen’s melodic and harmonic language is based upon the seven modes of limited transposition. These scales divide the octave into different arrangements of semitones, tones and minor or major thirds which are unlike tonal scales, medieval modes (such as Dorian or Phrygian) or serial tone rows all of which can be transposed twelve times. They are distinctive in that they: • have varying numbers of pitches (Mode 1 contains six, Mode 2 has eight and Mode 7 has ten) • divide the octave in half (the augmented 4th being the point of symmetry - except in Mode 3) • can be transposed a limited number of times (Mode 1 has two, Mode 2 has three) Example: Quartet for the End of Time (movement 2) letter G to H (violin and ‘cello) Mode 3 Whole tone scale A scale where the notes are all one tone apart. Only two such scales exist: Shostakovich uses part of this scale in String Quartet No.8 (fig. 4 in the 1st mvt.) and Messiaen in the 6th movement of Quartet for the End of Time.