Topographically Specific Hippocampal Projections Target Functionally Distinct Prefrontal Areas in the Rhesus Monkey
HIPPOCAMPUS 5:511-533 (1995) Topographically Specific Hippocampal Projections Target Functionally Distinct Prefrontal Areas in the Rhesus Monkey Helen Barbas1r2and Gene J. Blatt2 [Department of Health Sciences, Boston University and lJ2Departmentof Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts ABSTRACT: The sources of ipsilateral projections from the hippocam- KEY WORDS: medial prefrontal cortex, orbitofrontal pal formation, the presubiculum, area 29a-c, and parasubiculum to me- cortex, memory, CA1, subiculum, .presubiculum, area dial, orbital, and lateral prefrontal cortices were studied with retrograde 29, lateral prefrontal cortex, working memory tracers in 27 rhesus monkeys. labeled neurons within the hippocampal formation (CA1, CA1’, prosubiculum, and subiculum) were found ros- trally, although some were noted throughout the entire rostrocaudal ex- tent of the hippocampal formation. Most labeled neurons in the hip- pocampal formation projected to medial prefrontal cortices, followed by orbital areas. In addition, there were differences in the topography of af- ferent neurons projecting to medial when compared with orbital cortices. Labeled neurons innervating medial cortices were found mainly in the The prefrontal cortex in the rhesus monkey is a large CA1’ and CA1 fields rostrally, but originated in the subicular fields cau- cortical cxpanse associated with complex cognitive, dally. In contrast, labeled neurons which innervated orbital cortices were mnemonic, and emotional processes (for rcvicws, see considerably more focal, emanating from the same relative position within Fuster, 1989; Barbas, 1995a). The functions of pre- a field throughout the rostrocaudal extent of the hippocampal formation. frontal areas are likely to depend on their connections In marked contrast to the pattern of projection to medial and orbital prefrontal cortices, lateral prefrontal areas received projections from only with other cortical and subcortical structures.
[Show full text]