Topographically Specific Hippocampal Projections Target Functionally Distinct Prefrontal Areas in the Rhesus Monkey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Eloreta Quantitative EEG Study
brain sciences Article Power Spectral Differences between Transient Epileptic and Global Amnesia: An eLORETA Quantitative EEG Study Jacopo Lanzone 1,* , Claudio Imperatori 2 , Giovanni Assenza 1 , Lorenzo Ricci 1 , Benedetto Farina 2, Vincenzo Di Lazzaro 1 and Mario Tombini 1 1 Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; [email protected] (G.A.); [email protected] (L.R.); [email protected] (V.D.L.); [email protected] (M.T.) 2 Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163 Rome, Italy; [email protected] (C.I.); [email protected] (B.F.) * Correspondence: [email protected] Received: 14 July 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Transient epileptic amnesia (TEA) is a rare epileptic condition, often confused with transient global amnesia (TGA). In a real-life scenario, differential diagnosis between these two conditions can be hard. In this study we use power spectral analysis empowered by exact Low Resolution Brain Electromagnetic Tomography (eLORETA) to evidence the differences between TEA and TGA. Fifteen patients affected by TEA (64.2 5.2 y.o.; 11 female/4 male; 10 left and 5 right temporal epileptic focus) ± and 15 patients affected by TGA (65.8 7.2 y.o.; 11 females/4 males) were retrospectively identified in ± our clinical records. All patients recorded EEGs after symptoms offset. EEGs were analyzed with eLORETA to evidence power spectral contrast between the two conditions. We used an inverse problem solution to localize the source of spectral differences. -
10041.Full.Pdf
The Journal of Neuroscience, July 23, 2014 • 34(30):10041–10054 • 10041 Systems/Circuits Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders Sarah R. Heilbronner and Suzanne N. Haber Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642 The cingulum bundle (CB) is one of the brain’s major white matter pathways, linking regions associated with executive function, decision-making, and emotion. Neuroimaging has revealed that abnormalities in particular locations within the CB are associated with specific psychiatric disorders, including depression and bipolar disorder. However, the fibers using each portion of the CB remain unknown. In this study, we used anatomical tract-tracing in nonhuman primates (Macaca nemestrina, Macaca fascicularis, Macaca mulatta)toexaminetheorganizationofspecificcingulate,noncingulatefrontal,andsubcorticalpathwaysthroughtheCB.Thegoalswere as follows: (1) to determine connections that use the CB, (2) to establish through which parts of the CB these fibers travel, and (3) to relate the CB fiber pathways to the portions of the CB identified in humans as neurosurgical targets for amelioration of psychiatric disorders. Results indicate that cingulate, noncingulate frontal, and subcortical fibers all travel through the CB to reach both cingulate and noncin- gulate targets. However, many brain regions send projections through only part, not all, of the CB. For example, amygdala fibers are not present in the caudal portion of the dorsal CB. These results allow segmentation of the CB into four unique zones. We identify the specific connections that are abnormal in psychiatric disorders and affected by neurosurgical interventions, such as deep brain stimulation and cingulotomy. -
Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment
The Journal of Neuroscience, December 1989, 9(12): 4355-4370 Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment Stuart Zola-Morgan,’ Larry Ft. Squire,’ David G. Amaral,2 and Wendy A. Suzuki2J Veterans Administration Medical Center, San Diego, California, 92161, and Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, The Salk Institute, San Diego, California 92136, and 3Group in Neurosciences, University of California, San Diego, La Jolla, California 92093 In monkeys, bilateral damage to the medial temporal region Moss, 1984). (In this notation, H refers to the hippocampus, A produces severe memory impairment. This lesion, which in- to the amygdala, and the plus superscript (+) to the cortical cludes the hippocampal formation, amygdala, and adjacent tissue adjacent to each structure.) This lesion appears to con- cortex, including the parahippocampal gyrus (the H+A+ le- stitute an animal model of medial temporal lobe amnesia like sion), appears to constitute an animal model of human me- that exhibited by the well-studied patient H.M. (Scoville and dial temporal lobe amnesia. Reexamination of histological Milner, 1957). material from previously studied monkeys with H+A+ lesions The H+A+ lesion produces greater memory impairment than indicated that the perirhinal cortex had also sustained sig- a lesion limited to the hippocampal formation and parahip- nificant damage. Furthermore, recent neuroanatomical stud- pocampal cortex-the H+ lesion (Mishkin, 1978; Mahut et al., ies show that the perirhinal cortex and the closely associated 1982; Zola-Morgan and Squire, 1985, 1986; Zola-Morgan et al., parahippocampal cortex provide the major source of cortical 1989a). -
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: a Steered-Glutamatergic Perspective
brain sciences Review Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective Amjad H. Bazzari * and H. Rheinallt Parri School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)1212044186 Received: 7 October 2019; Accepted: 29 October 2019; Published: 31 October 2019 Abstract: The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance. Keywords: neuromodulators; synaptic plasticity; learning; memory; LTP; LTD; GPCR; astrocytes 1. Introduction A huge emphasis has been put into discovering the molecular pathways that govern synaptic plasticity induction since it was first discovered [1], which markedly improved our understanding of the functional aspects of plasticity while introducing a surprisingly tremendous complexity due to numerous mechanisms involved despite sharing common “glutamatergic” mediators [2]. -
Connectivity of BA46 Involvement in the Executive Control of Language
Alfredo Ardila, Byron Bernal and Monica Rosselli Psicothema 2016, Vol. 28, No. 1, 26-31 ISSN 0214 - 9915 CODEN PSOTEG Copyright © 2016 Psicothema doi: 10.7334/psicothema2015.174 www.psicothema.com Connectivity of BA46 involvement in the executive control of language Alfredo Ardila1, Byron Bernal2 and Monica Rosselli3 1 Florida International University, 2 Miami Children’s Hospital and 3 Florida Atlantic University Abstract Resumen Background: Understanding the functions of different brain areas has Estudio de la conectividad del AB46 en el control ejecutivo del lenguaje. represented a major endeavor of contemporary neurosciences. Modern Antecedentes: la comprensión de las funciones de diferentes áreas neuroimaging developments suggest cognitive functions are associated cerebrales representa una de las mayores empresas de las neurociencias with networks rather than with specifi c areas. Objectives. The purpose contemporáneas. Los estudios contemporáneos con neuroimágenes of this paper was to analyze the connectivity of Brodmann area (BA) 46 sugieren que las funciones cognitivas se asocian con redes más que con (anterior middle frontal gyrus) in relation to language. Methods: A meta- áreas específi cas. El propósito de este estudio fue analizar la conectividad analysis was conducted to assess the language network in which BA46 is del área de Brodmann 46 (BA46) (circunvolución frontal media anterior) involved. The DataBase of Brainmap was used; 19 papers corresponding con relación al lenguaje. Método: se llevó a cabo un meta-análisis para to 60 experimental conditions with a total of 245 subjects were included. determinar el circuito o red lingüística en la cual participa BA46. Se utilizó Results: Our results suggest the core network of BA46. -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
Glutamate Binding in Primate Brain
Journal of Neuroscience Research 27512-521 (1990) Quisqualate- and NMDA-Sensitive [3H]Glutamate Binding in Primate Brain A.B. Young, G.W. Dauth, Z. Hollingsworth, J.B. Penney, K. Kaatz, and S. Gilman Department of Neurology. University of Michigan, Ann Arbor Excitatory amino acids (EAA) such as glutamate and Young and Fagg, 1990). Because EAA are involved in aspartate are probably the neurotransmitters of a general cellular metabolic functions, they were not orig- majority of mammalian neurons. Only a few previous inally considered to be likcl y neurotransmitter candi- studies have been concerned with the distribution of dates. Electrophysiological studies demonstrated con- the subtypes of EAA receptor binding in the primate vincingly the potency of these substances as depolarizing brain. We examined NMDA- and quisqualate-sensi- agents and eventually discerned specific subtypes of tive [3H]glutamate binding using quantitative autora- EAA receptors that responded preferentially to EAA an- diography in monkey brain (Macaca fascicularis). alogs (Dingledine et al., 1988). Coincident with the elec- The two types of binding were differentially distrib- trophysiological studies, biochemical studies indicated uted. NMDA-sensitive binding was most dense in that EAA were released from slice and synaptosome dentate gyrus of hippocampus, stratum pyramidale preparations in a calcium-dependent fashion and were of hippocampus, and outer layers of cerebral cortex. accumulated in synaptosomc preparations by a high-af- Quisqualate-sensitive binding was most dense in den- finity transport system. With these methodologies, EAA tate gyrus of hippocampus, inner and outer layers of release and uptake were found to be selectively de- cerebral cortex, and molecular layer of cerebellum. -
Contributions of the Hippocampus and the Striatum to Simple Association and Frequency-Based Learning
www.elsevier.com/locate/ynimg NeuroImage 27 (2005) 291 – 298 Contributions of the hippocampus and the striatum to simple association and frequency-based learning Dima Amso,a,b,* Matthew C. Davidson,a Scott P. Johnson,b Gary Glover,c and B.J. Caseya aSackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, 1300 York Avenue, Box 140, New York, NY 10021, USA bDepartment of Psychology, New York University, NY 10003, USA cDepartment of Radiology, Stanford University, CA 94305, USA Received 8 September 2004; revised 30 January 2005; accepted 8 February 2005 Available online 8 April 2005 Using fMRI and a learning paradigm, this study examined the result from how often an event is encountered or how often it is independent contributions of the hippocampus and striatum to simple presented in a particular context or paired with other events. association and frequency-based learning. We scanned 10 right-handed Understanding the neural bases of these types of learning is the young adult subjects using a spiral in/out sequence on a GE 3.0 T objective of this study. scanner during performance of the learning paradigm. The paradigm A common measure of learning, used in both human infant and consisted of 2 cues that predicted each of 3 targets with varying nonhuman animal research, is response to novelty. The theoretical probabilities. Simultaneously, we varied the frequency with which each target was presented throughout the task, independent of cue framework (Sokolov, 1963) underlying these novelty-preference associations. Subjects had shorter response latencies to frequently paradigms is that attention is oriented more toward novel, relative occurring and highly associated target stimuli and longer response to familiar, stimuli. -
Neural Populations in Human Posteromedial Cortex Display Opposing Responses During Memory and Numerical Processing
Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing Brett L. Foster, Mohammad Dastjerdi, and Josef Parvizi1 Laboratory of Behavioral and Cognitive Neurology, Department of Neurology and Neurological Sciences, Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford University, Stanford, CA 94305 Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved August 7, 2012 (received for review April 23, 2012) Our understanding of the human default mode network derives rate is correlated with behavioral performance, where lower levels primarily from neuroimaging data but its electrophysiological of PCC firing suppression are associated with longer reaction correlates remain largely unexplored. To address this limitation, times (RTs) and higher error rate, a correlation also previously we recorded intracranially from the human posteromedial cortex reported with fMRI in humans (11, 12). Similarly, direct cortical (PMC), a core structure of the default mode network, during various recordings using electrocorticography (ECoG) from human conditions of internally directed (e.g., autobiographical memory) as DMN (13–16) have shown suppression of broadband γ-power [a opposed to externally directed focus (e.g., arithmetic calculation). correlate of population firing rate (17, 18)] during attentional We observed late-onset (>400 ms) increases in broad high γ-power effort. More recently, this broadband suppression across human (70–180 Hz) within PMC subregions during memory retrieval. High DMN regions has also been shown to correlate with behavioral γ-power was significantly reduced or absent when subjects re- performance (16). Taken together, these findings have provided trieved self-referential semantic memories or responded to self- clear electrophysiological evidence for DMN suppression. -
Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides. -
Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum Along 2 the Dorsal-Ventral Axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.14.876516; this version posted December 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distinct transcriptomic cell types and neural circuits of the subiculum and prosubiculum along 2 the dorsal-ventral axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E. Hirokawa1, Thuc Nghi Nguyen1, Lucas T. Graybuck1, Olivia 5 Fong1, Phillip Bohn1, Kiet Ngo1, Kimberly A. Smith1, Christof Koch1, John W. Phillips1, Ed S. Lein1, 6 Julie A. Harris1, Bosiljka Tasic1, Hongkui Zeng1 7 8 1Allen Institute for Brain Science, Seattle, WA 98109, USA 9 10 2Lead Contact 11 12 *Correspondence: [email protected] (SLD) 13 14 15 Highlights 16 17 1. 27 transcriptomic cell types identified in and spatially registered to “subicular” regions. 18 2. Anatomic borders of “subicular” regions reliably determined along dorsal-ventral axis. 19 3. Distinct cell types and circuits of full-length subiculum (Sub) and prosubiculum (PS). 20 4. Brain-wide cell-type specific projections of Sub and PS revealed with specific Cre-lines. 21 22 23 In Brief 24 25 Ding et al. show that mouse subiculum and prosubiculum are two distinct regions with differential 26 transcriptomic cell types, subtypes, neural circuits and functional correlation. The former has obvious 27 topographic projections to its main targets while the latter exhibits widespread projections to many 28 subcortical regions associated with reward, emotion, stress and motivation. -
Hippocampal Physiology, Structure and Function and the Neuroscience
Behav. Sci. 2013, 3, 298–315; doi:10.3390/bs3020298 OPEN ACCESS behavioral sciences ISSN 2076-328X www.mdpi.com/journal/behavsci/ Review Hippocampal Physiology, Structure and Function and the Neuroscience of Schizophrenia: A Unified Account of Declarative Memory Deficits, Working Memory Deficits and Schizophrenic Symptoms Cynthia G. Wible Harvard Medical School, VA Boston Healthcare System, 940 Belmont Street Psychiatry 116A Brockton, MA 02301, USA; E-Mail: [email protected] Received: 25 April 2013; in revised form: 30 May 2013 / Accepted: 8 June 2013 / Published: 21 June 2013 Abstract: Memory impairment is a consistent feature of the schizophrenic syndrome. Hippocampal dysfunction has also been consistently demonstrated. This review will discuss neurophysiological and neuroanatomical aspects of memory formation and how they relate to memory impairment in schizophrenia. An understanding of the cellular physiology and connectivity of the hippocampus with other regions can also aid in understanding the relationship between schizophrenic declarative or relational memory deficits, working memory deficits and the clinical symptoms of the syndrome. Keywords: hippocampus; memory; schizophrenia; parietal; superior temporal sulcus; social cognition 1. Introduction Declarative memory and working memory deficits have been consistently demonstrated to be associated with the schizophrenic syndrome [1,2]. Although individuals with hippocampal damage can rehearse information across small time intervals and retain it, under normal circumstances, the hippocampus is used to process and integrate information across very brief time intervals; and is active and used during working memory tasks [3–6]. In fact, many of the hippocampal-dependent memory tasks used with animals in conjunction with hippocampal single neuronal recordings and lesion studies could be classified as working memory tasks (e.g., T-maze, radial arm maze, etc.; reviewed in a later Behav.