Connectivity of BA46 Involvement in the Executive Control of Language
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dorsolateral Prefrontal Cortex-Based Control with an Implanted Brain–Computer Interface
www.nature.com/scientificreports OPEN Dorsolateral prefrontal cortex‑based control with an implanted brain–computer interface Sacha Leinders 1, Mariska J. Vansteensel 1, Mariana P. Branco 1, Zac V. Freudenburg1, Elmar G. M. Pels1, Benny Van der Vijgh1, Martine J. E. Van Zandvoort2, Nicolas F. Ramsey1* & Erik J. Aarnoutse 1 The objective of this study was to test the feasibility of using the dorsolateral prefrontal cortex as a signal source for brain–computer interface control in people with severe motor impairment. We implanted two individuals with locked‑in syndrome with a chronic brain–computer interface designed to restore independent communication. The implanted system (Utrecht NeuroProsthesis) included electrode strips placed subdurally over the dorsolateral prefrontal cortex. In both participants, counting backwards activated the dorsolateral prefrontal cortex consistently over the course of 47 and 22months, respectively. Moreover, both participants were able to use this signal to control a cursor in one dimension, with average accuracy scores of 78 ± 9% (standard deviation) and 71 ± 11% (chance level: 50%), respectively. Brain– computer interface control based on dorsolateral prefrontal cortex activity is feasible in people with locked‑in syndrome and may become of relevance for those unable to use sensorimotor signals for control. Locked-in syndrome (LIS) is characterized by intact cognition and (almost) complete loss of voluntary movement1. Brain–computer interface (BCI) systems allow computer control with brain activity and can there- fore provide an alternative communication channel to people with LIS. BCI systems depending on self-initiated modulation of brain activity generally measure from sensorimotor areas, e.g.2–9. However, not all people with LIS may be able to reliably modulate sensorimotor activity, due to for instance atrophy secondary to neurode- generative disease10,11, damage afer stroke or injury, or atypical neural activity 12. -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
The Prefrontal Cortex
Avens Publishing Group Inviting Innovations Open Access Review Article J Hum Anat Physiol July 2017 Volume:1, Issue:1 © All rights are reserved by Ogeturk. AvensJournal Publishing of Group Inviting Innovations Human Anatomy The Prefrontal Cortex: A Basic & Physiology Embryological, Histological, Anatomical, and Functional Ramazan Fazıl Akkoc and Murat Ogeturk* Department of Anatomy, Firat University, Turkey Guideline *Address for Correspondence Murat Ogeturk, Firat University, Faculty of Medicine, 23119 Elazig, Turkey, Tel: +90-424-2370000 (ext: 4654); Fax: +90-424-2379138; Keywords: Prefrontal cortex; Working memory; Frontal lobe E-Mail: [email protected] Abstract Submission: 24 May, 2017 Accepted: 11 July, 2017 The prefrontal cortex (PFC) unites, processes and controls the Published: 19 August, 2017 information coming from cortex and subcortical structures, and Copyright: © 2017 Akkoc RF. This is an open access article distributed decides and executes goal-oriented behavior. A major function of PFC under the Creative Commons Attribution License, which permits is to maintain the attention. Furthermore, it has many other functions unrestricted use, distribution, and reproduction in any medium, provided including working memory, problem solving, graciousness, memory, the original work is properly cited. and intellectuality. PFC is well developed in humans and localized to the anterior of the frontal lobe. This article presents a systematic review and detailed summary of embryology, histology, anatomy, functions and lesions of PFC. I. Lamina zonalis: Contains few Cajal horizontal cells. The axons of Martinotti cells located at deep layers, the last branches of the apical dendrites of pyramidal cells, and the last branches Introduction of the afferent nerve fibers extend to this lamina. -
Neural Correlates Underlying Change in State Self-Esteem Hiroaki Kawamichi 1,2,3, Sho K
www.nature.com/scientificreports OPEN Neural correlates underlying change in state self-esteem Hiroaki Kawamichi 1,2,3, Sho K. Sugawara2,4,5, Yuki H. Hamano2,5,6, Ryo Kitada 2,7, Eri Nakagawa2, Takanori Kochiyama8 & Norihiro Sadato 2,5 Received: 21 July 2017 State self-esteem, the momentary feeling of self-worth, functions as a sociometer involved in Accepted: 11 January 2018 maintenance of interpersonal relations. How others’ appraisal is subjectively interpreted to change Published: xx xx xxxx state self-esteem is unknown, and the neural underpinnings of this process remain to be elucidated. We hypothesized that changes in state self-esteem are represented by the mentalizing network, which is modulated by interactions with regions involved in the subjective interpretation of others’ appraisal. To test this hypothesis, we conducted task-based and resting-state fMRI. Participants were repeatedly presented with their reputations, and then rated their pleasantness and reported their state self- esteem. To evaluate the individual sensitivity of the change in state self-esteem based on pleasantness (i.e., the subjective interpretation of reputation), we calculated evaluation sensitivity as the rate of change in state self-esteem per unit pleasantness. Evaluation sensitivity varied across participants, and was positively correlated with precuneus activity evoked by reputation rating. Resting-state fMRI revealed that evaluation sensitivity was positively correlated with functional connectivity of the precuneus with areas activated by negative reputation, but negatively correlated with areas activated by positive reputation. Thus, the precuneus, as the part of the mentalizing system, serves as a gateway for translating the subjective interpretation of reputation into state self-esteem. -
Healthy and Abnormal Development of the Prefrontal Cortex
Developmental Neurorehabilitation, October 2009; 12(5): 279–297 Healthy and abnormal development of the prefrontal cortex MEGAN SPENCER-SMITH1,2 & VICKI ANDERSON1,2,3 1Murdoch Childrens Research Institute, Melbourne, Australia, 2University of Melbourne, Melbourne, Australia, and 3Royal Children’s Hospital, Melbourne, Australia (Received 8 October 2008; accepted 3 June 2009) Abstract Background: While many children with brain conditions present with cognitive, behavioural, emotional, academic and social impairments, other children recover with seemingly few impairments. Animal studies and preliminary child studies have identified timing of brain lesion as a key predictor in determining functional outcome following early brain lesions. Review: This research suggests that knowledge of healthy developmental processes in brain structure and function is essential for better understanding functional recovery and outcome in children with brain lesions. This review paper aims to equip researchers with current knowledge of key principles of developmental processes in brain structure and function. Timetables for development of the prefrontal cortex (PFC), a brain region particularly vulnerable to lesions due to its protracted developmental course, are examined. In addition, timetables for development of executive skills, which emerge in childhood and have a prolonged developmental course that parallels development of the PFC, are also discussed. Conclusions: Equipped with this knowledge, researchers are now in a better position to understand functional -
Human Prefrontal Cortex: Processing and Representational Perspectives
REVIEWS HUMAN PREFRONTAL CORTEX: PROCESSING AND REPRESENTATIONAL PERSPECTIVES Jacqueline N. Wood and Jordan Grafman Through evolution, humans have acquired ‘higher’ cognitive skills — such as language, reasoning and planning — and complex social behaviour. Evidence from neuropsychological and neuroimaging research indicates that the prefrontal cortex (PFC) underlies much of this higher cognition. A number of theories have been proposed for how the PFC might achieve this. Although many of these theories focus on the types of ‘process’ that the PFC carries out, we argue for the validity of a representational approach to understanding PFC function. Although it is clear that the PFC is important for higher The first of our five proposed criteria is that a theory cognitive skills, particularly in humans, how it achieves must be explicit about the information that is stored in these functions is unknown. The human PFC is not nec- the PFC. Does it store information akin to a memory essarily larger than that of other primate species1, but its function (representational approach)? Does it store neural architecture is probably more sophisticated or algorithms or computational procedures only for organized differently to accommodate higher cognitive manipulating information stored elsewhere in the brain functions that are superior to those of related species2,3. (processing approach)? Does it do a combination of Researchers have proposed a number of theories of PFC these things (hybrid approach)? Second, the theory function, many of which centre around the representa- must be consistent with our knowledge of stimulus rep- tions or processes that are mediated by the PFC. We resentation in the brain. -
Supplementary Tables
Supplementary Tables: ROI Atlas Significant table grey matter Test ROI # Brainetome area beta volume EG pre vs post IT 8 'superior frontal gyrus, part 4 (dorsolateral area 6), right', 0.773 17388 11 'superior frontal gyrus, part 6 (medial area 9), left', 0.793 18630 12 'superior frontal gyrus, part 6 (medial area 9), right', 0.806 24543 17 'middle frontal gyrus, part 2 (inferior frontal junction), left', 0.819 22140 35 'inferior frontal gyrus, part 4 (rostral area 45), left', 1.3 10665 67 'paracentral lobule, part 2 (area 4 lower limb), left', 0.86 13662 EG pre vs post ET 20 'middle frontal gyrus, part 3 (area 46), right', 0.934 28188 21 'middle frontal gyrus, part 4 (ventral area 9/46 ), left' 0.812 27864 31 'inferior frontal gyrus, part 2 (inferior frontal sulcus), left', 0.864 11124 35 'inferior frontal gyrus, part 4 (rostral area 45), left', 1 10665 50 'orbital gyrus, part 5 (area 13), right', -1.7 22626 67 'paracentral lobule, part 2 (area 4 lower limb), left', 1.1 13662 180 'cingulate gyrus, part 3 (pregenual area 32), right', 0.9 10665 261 'Cerebellar lobule VIIb, vermis', -1.5 729 IG pre vs post IT 16 middle frontal gyrus, part 1 (dorsal area 9/46), right', -0.8 27567 24 'middle frontal gyrus, part 5 (ventrolateral area 8), right', -0.8 22437 40 'inferior frontal gyrus, part 6 (ventral area 44), right', -0.9 8262 54 'precentral gyrus, part 1 (area 4 head and face), right', -0.9 14175 64 'precentral gyrus, part 2 (caudal dorsolateral area 6), left', -1.3 18819 81 'middle temporal gyrus, part 1 (caudal area 21), left', -1.4 14472 -
Developmental Pathways to Functional Brain Networks: Emerging Principles
TICS-1251; No. of Pages 14 Review Special Issue: The Connectome Developmental pathways to functional brain networks: emerging principles 1,2,3 V. Menon 1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA 2 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA 3 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94304, USA The human brain undergoes protracted developmental disorders. The perspective advanced in this review is that changes during which it constructs functional networks a thorough understanding of the functional architecture of that engender complex cognitive abilities. Understand- the adult brain requires critical consideration of the devel- ing brain function ultimately depends on knowledge of opmental pathways by which plasticity and learning lead how dynamic interactions between distributed brain to the construction of dedicated large-scale brain systems. regions mature with age to produce sophisticated cog- Most, if not all, major psychopathologies, with the excep- nitive systems. This review summarizes recent progress tion of the dementias, have a prominent origin in childhood in our understanding of the ontogeny of functional brain or adolescence [4]. The onset and diagnosis of these psycho- networks. Here I describe how complementary methods pathologies vary greatly: some, like autism, are mainly for probing functional connectivity are providing unique diagnosed in early childhood, others such as attention deficit insights into the emergence and maturation of distinct hyperactivity disorder and anxiety disorders are mainly functional networks from childhood to adulthood. diagnosed in middle childhood, whereas bipolar disorder, I highlight six emerging principles governing the devel- depression, and schizophrenia are predominantly diag- opment of large-scale functional networks and discuss nosed in late adolescence. -
A Brief Anatomical Sketch of Human Ventromedial Prefrontal Cortex Jamil P
This article is a supplement referenced in Delgado, M. R., Beer, J. S., Fellows, L. K., Huettel, S. A., Platt, M. L., Quirk, G. J., & Schiller, D. (2016). Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 19(12), 1545-1552. Brain images used in this article (vmPFC mask) are available at https://identifiers.org/neurovault.collection:5631 A Brief Anatomical Sketch of Human Ventromedial Prefrontal Cortex Jamil P. Bhanji1, David V. Smith2, Mauricio R. Delgado1 1 Department of Psychology, Rutgers University - Newark 2 Department of Psychology, Temple University The ventromedial prefrontal cortex (vmPFC) is a major focus of investigation in human neuroscience, particularly in studies of emotion, social cognition, and decision making. Although the term vmPFC is widely used, the zone is not precisely defined, and for varied reasons has proven a complicated region to study. A difficulty identifying precise boundaries for the vmPFC comes partly from varied use of the term, sometimes including and sometimes excluding ventral parts of anterior cingulate cortex and medial parts of orbitofrontal cortex. These discrepancies can arise both from the need to refer to distinct sub-regions within a larger area of prefrontal cortex, and from the spatially imprecise nature of research methods such as human neuroimaging and natural lesions. The inexactness of the term is not necessarily an impediment, although the heterogeneity of the region can impact functional interpretation. Here we briefly address research that has helped delineate sub-regions of the human vmPFC, we then discuss patterns of white matter connectivity with other regions of the brain and how they begin to inform functional roles within vmPFC. -
What Does the Prefrontal Cortex “Do” in Affect: Perspectives on Frontal EEG Asymmetry Research
Biological Psychology 67 (2004) 219–233 Commentary What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research Richard J. Davidson∗ Laboratory for Affective Neuroscience, W.M. Keck Laboratory for Functional Neuroimaging and Behavior, University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706, USA Abstract This commentary provides reflections on the current state of affairs in research on EEG frontal asymmetries associated with affect. Although considerable progress has occurred since the first report on this topic 25 years ago, research on frontal EEG asymmetries associated with affect has largely evolved in the absence of any serious connection with neuroscience research on the structure and function of the primate prefrontal cortex (PFC). Such integration is important as this work progresses since the neuroscience literature can help to understand what the prefrontal cortex is “doing” in affective processing. Data from the neuroscience literature on the heterogeneity of different sectors of the PFC are introduced and more specific hypotheses are offered about what different sectors of the PFC might be doing in affect. A number of methodological issues associated with EEG measures of functional prefrontal asymmetries are also considered. © 2004 Elsevier B.V. All rights reserved. Keywords: Frontal EEG asymmetry; Emotion; Prefrontal cortex; Neuroimaging 1. Introduction It is very gratifying for me personally to be writing this commentary since the publi- cation of this Special Issue marks the fact that there now exists a substantial corpus of scientific literature investigating methodological and conceptual issues surrounding the use of measures of asymmetric prefrontal electrical signals recorded from the scalp surface to make inferences about emotional processes. -
Shared Neural Resources of Rhythm and Syntax: an ALE Meta-Analysis Matthew Heard A, B and Yune S
bioRxiv preprint doi: https://doi.org/10.1101/822676; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Shared neural resources of rhythm and syntax: An ALE Meta-Analysis Matthew Heard a, b and Yune S. Lee a, b, c † a Department of Speech and Hearing Sciences, The Ohio State University b Neuroscience Graduate Program, The Ohio State University c Chronic Brain Injury, Discovery Theme, The Ohio State University, Columbus, OH 43210, USA † Corresponding author. Email address [email protected] Abstract A growing body of evidence has highlighted behavioral connections between musical rhythm and linguistic syntax, suggesting that these may be mediated by common neural resources. Here, we performed a quantitative meta-analysis of neuroimaging studies using activation likelihood estimate (ALE) to localize the shared neural structures engaged in a representative set of musical rhythm (rhythm, beat, and meter) and linguistic syntax (merge movement, and reanalysis). Rhythm engaged a bilateral sensorimotor network throughout the brain consisting of the inferior frontal gyri, supplementary motor area, superior temporal gyri/temporoparietal junction, insula, the intraparietal lobule, and putamen. By contrast, syntax mostly recruited the left sensorimotor network including the inferior frontal gyrus, posterior superior temporal gyrus, premotor cortex, and supplementary motor area. Intersections between rhythm and syntax maps yielded overlapping regions in the left inferior frontal gyrus, left supplementary motor area, and bilateral insula—neural substrates involved in temporal hierarchy processing and predictive coding. Together, this is the first neuroimaging meta-analysis providing detailed anatomical overlap of sensorimotor regions recruited for musical rhythm and linguistic syntax. -
Seed MNI Coordinates Lobe
MNI Coordinates Seed Lobe (Hemisphere) Region BAa X Y Z FP1 -18 62 0 Frontal Lobe (L) Medial Frontal Gyrus 10 FPz 4 62 0 Frontal Lobe (R) Medial Frontal Gyrus 10 FP2 24 60 0 Frontal Lobe (R) Superior Frontal Gyrus 10 AF7 -38 50 0 Frontal Lobe (L) Middle Frontal Gyrus 10 AF3 -30 50 24 Frontal Lobe (L) Superior Frontal Gyrus 9 AFz 4 58 30 Frontal Lobe (R) Medial Frontal Gyrus 9 AF4 36 48 20 Frontal Lobe (R) Middle Frontal Gyrus 10 AF8 42 46 -4 Frontal Lobe (R) Inferior Frontal Gyrus 10 F7 -48 26 -4 Frontal Lobe (L) Inferior Frontal Gyrus 47 F5 -48 28 18 Frontal Lobe (L) Inferior Frontal Gyrus 45 F3 -38 28 38 Frontal Lobe (L) Precentral Gyrus 9 F1 -20 30 50 Frontal Lobe (L) Superior Frontal Gyrus 8 Fz 2 32 54 Frontal Lobe (L) Superior Frontal Gyrus 8 F2 26 32 48 Frontal Lobe (R) Superior Frontal Gyrus 8 F4 42 30 34 Frontal Lobe (R) Precentral Gyrus 9 F6 50 28 14 Frontal Lobe (R) Middle Frontal Gyrus 46 F8 48 24 -8 Frontal Lobe (R) Inferior Frontal Gyrus 47 FT9 -50 -6 -36 Temporal Lobe (L) Inferior Temporal Gyrus 20 FT7 -54 2 -8 Temporal Lobe (L) Superior Temporal Gyrus 22 FC5 -56 4 22 Frontal Lobe (L) Precentral Gyrus 6 FC3 -44 6 48 Frontal Lobe (L) Middle Frontal Gyrus 6 FC1 -22 6 64 Frontal Lobe (L) Middle Frontal Gyrus 6 FCz 4 6 66 Frontal Lobe (R) Medial Frontal Gyrus 6 FC2 28 8 60 Frontal Lobe (R) Sub-Gyral 6 FC4 48 8 42 Frontal Lobe (R) Middle Frontal Gyrus 6 FC6 58 6 16 Frontal Lobe (R) Inferior Frontal Gyrus 44 FT8 54 2 -12 Temporal Lobe (R) Superior Temporal Gyrus 38 FT10 50 -6 -38 Temporal Lobe (R) Inferior Temporal Gyrus 20 T7/T3