The Planet, Satellites and Magnetosphere Edited by Fran Bagenal, Timothy E

Total Page:16

File Type:pdf, Size:1020Kb

The Planet, Satellites and Magnetosphere Edited by Fran Bagenal, Timothy E Cambridge University Press 0521818087 - Jupiter: The Planet, Satellites and Magnetosphere Edited by Fran Bagenal, Timothy E. Dowling and William B. McKinnon Index More information INDEX abundances, 62 density, 244 accelerometer, 200 leading hemisphere, 245 accretion, 27, 52, 300 amino acid, 354 disk, 23, 29, 30, 52, 219 Amirani flow field, 309 efficiency, 52 ammonia, 22, 44, 59, 60, 63, 64, 73, 74, 79, 82, 86, 89, 91, 110, gas, 30, 31 117, 136, 137, 173, 291, 297, 299, 300 isolation mass, 28 abundance, 107 oligarchic growth, 28 depletion, 71 rapid, 29 ice, 68, 90–92, 100 rate, 27, 30 mixing ratio, 123 runaway, 28 photolysis, 72, 97 slow, 29 solid, 86 acetylene, 67, 129, 131, 132, 138 ammonia cloud, 71, 80, 82 Achilles, 264 ammonia hydrate, 297 Adastea, 673 ammonium hydrosulfide, 68, 72, 79, 83, 86, 89, 91, 100 adiabat ammonium hydrosulfide cloud, 79 dry, 116 ammonium salt, 67 moist, 116 amorphous ice, 74 adiabatic cooling, 80 Amp`ere’s law, 540 adiabatic invariant, 622 Ananke, 265, 268 adiabatic mirroring, 651 angular momentum, 23, 27–29, 31, 122, 655 Adlinda, 417–419 Anshar Sulcus, 367, 374–376 Adrastea, 237, 241, 243, 244, 246, 247, 249, 254, 256, 258, 498, anticyclone, 114 671 Antilochus, 274 aeronomy, 190, 214 approach movies, 106 aerosol, 60, 67, 82, 83, 87, 91, 98, 109, 111, 463 aqueous alteration, 268 absorption, 149 Arbela Sulcus, 368, 376, 377 carbonaceous, 97 argon, 20, 26, 37, 74 density, 82 Ariel, 122 extinction, 95 arsenic, 67 formation, 98 arsine, 66, 67, 136 loading, 143 Asgard, 417–419 mixing ratio, 95 Asgard Basin, 401, 402 production, 151 asteroid, 451 SL9, 150 differentiated, 268 Agenor Linea, 337 main belt, 263, 271 airglow, 384 albedo, 91 asthenosphere, 286 bolometric, 402 asthenospheric flow, 366 geometric, 247, 402 astrobiology, 339 single scattering, 91, 99 Astypalaea Linea, 337 Alfv´encharacteristic, 546, 550 atmosphere Alfv´enconductance, 477, 543, 545 composition, 59 Alfv´enspeed, 174, 178, 541, 653 window, 60, 86 Alfv´en wave, 520, 521, 531, 539, 542, 544–546, 554, 600, 650, 653 Atmospheric Structure Instruments, 61, 185, 200 Alfv´enwing, 520, 523, 525, 530, 539, 541–543, 545–547, 549, 550, aurora, 97, 139, 175, 185, 530, 595, 613, 617, 639 554 appearance, 646 Alfv´eniccurrent, 466, 653 dawn storm, 654 alkali, 465, 469, 474, 475, 497, 501, 502 main oval, 640, 641, 643–647, 649, 650, 653–657, 659–661, 664 alkali halide, 299 northern, 663 alkali metal, 44, 51 particles, 142 alkanes, 139 polar, 660, 661, 665 Allan deviation, 284 auroral allene, 134 chemistry, 142 Alpha Leo, 196 curtain, 646 aluminum, 293 decameter emission, 650 Amalthea, 237, 241–246, 249, 252, 256–258, 498, 596, 599, 671, electron 673, 675, 681, 682, 684 electrojet, 206, 213, 643 707 © Cambridge University Press www.cambridge.org Cambridge University Press 0521818087 - Jupiter: The Planet, Satellites and Magnetosphere Edited by Fran Bagenal, Timothy E. Dowling and William B. McKinnon Index More information 708 Index auroral (cont.) Callisto, 23, 29, 30, 248, 284, 294, 354, 355, 363, 367, 380, 383, emission, 131, 635, 642, 652, 661, 662 385, 388–390, 397, 428, 486, 488, 491, 503, 530, 584, 651 energy, 210, 213, 214 atmosphere, 471, 476, 477 enhancement, 196 core, 420 flare, 630 crater, 408, 410, 414, 436, 453 footprint, 97, 109, 650 crater chain, 272 haze, 142 dark hemisphere, 477 heating, 213 differentiation, 398 hot spot, 146, 196 dust, 236 ionosphere, 649 erosion, 410 kilometric radiation, 554, 641 exosphere, 400 oval, 96, 146, 205, 211–213, 475, 609 footprint, 653 particles, 97 gravity, 285 precipitation, 96, 598 gravity field, 420 region, 136 induced magnetic field, 420 spot, 571 interior, 281, 420, 421 storm, 648 ionosphere, 401 tail, 571 knob, 410–412, 417, 419, 420 zone, 191, 205 leading hemisphere, 400, 402 precipitation, 212 lithosphere, 415, 419, 420 Australian Telescope Compact Array, 177 north pole, 414 Automedon, 274 ocean, 282, 295 Avogadro’s number, 81 pit, 409, 412 radar signature, 403 back scattering, 95 surface, 295, 333 Baldur Patera, 318 surface age, 272 ballistic plume, 163 trailing hemisphere, 400–402, 531 banana cloud, 567 Caloris Basin, 417, 418 band, 106 carbon, 21, 37, 59, 69, 72, 74, 354, 402, 489, 491, 495 band model, 461 carbon dioxide, 67, 136, 332, 385, 400, 476, 501, 502 banded structure, 106 carbon monoxide, 67, 135, 141, 142, 169, 300 barge, 105, 114 carbonaceous chondrite, 286, 293, 332, 352, 354, 398, 399 oscillation, 114 carbonate, 331 baroclinic, 109, 116 Carme, 265 barotropic, 109, 116 Cassini, 67, 79, 96, 151, 241, 246, 631, 663, 684, 685 beaming curve, 679, 682 catenae, 398, 438, 448 Beer’s law, 90, 461, 462 Centaur, 263, 268, 271, 449 belt, 64, 83, 86, 89, 91, 100, 105, 110, 115, 118 central dome, 438 lightning, 120 central magnetosphere, 253 benzene, 67, 97, 135, 141, 143 central meridian longitude, 679 abundance, 141 centrifugal force, 282, 284 Bessel function, 609 Chaac Volcano, 463 beta turbulence, 106, 120 Chaac-Camaxtli region, 309 Bingham rheology, 407 Chandra, 207 biology, 486 Chandra observatory, 193 Biot-Savart’s law, 550 Chandra X-ray Observatory, 663 Birkeland current, 175, 213, 476, 646, 655 Chandra X-ray telescope, 644 bolide, 167 chaos, 271, 276, 390 bow shock, 523 charged particle, 245 Bran Crater, 429 charged particle precipitation, 97 branching ratio, 496 Chiron, 449 bremsstrahlung, 192, 644, 663, 683 chlorine, 67, 465, 469, 497 brick-red color, 112 chondrite, 286, 293 Bright Polar Region, 194, 663 chromophore, 68, 75, 82, 83, 93, 100 broadband kilometric emission, 640 chute deployment, 200 bromine, 67 circular variable filter, 193 brown dwarf, 35, 44, 47, 54 circumplanetary disk, 27, 30, 52 brown spot, 105 circumstellar disk, 24 Brownian coagulation, 98 clathrate, 21, 25, 74 bulls-eye pattern, 488 clay, 333, 398 buoyancy force, 45 cloud, 79, 84 buoyancy wave, 200 coalescence, 80 Burr Crater, 418 composition, 79 Buto Facula, 383, 410, 432 condensation, 80 Byblus Sulcus, 367, 373, 374, 378 microphysics, 80 sedimentation, 80 C22, 282, 283, 285, 286, 288, 295 tenuous, 85 Callanish, 344, 437, 442 cloud chamber, 92 © Cambridge University Press www.cambridge.org Cambridge University Press 0521818087 - Jupiter: The Planet, Satellites and Magnetosphere Edited by Fran Bagenal, Timothy E. Dowling and William B. McKinnon Index More information Index 709 cloud model, 65 current sheet, 489, 595, 599, 604, 606, 613, 646, 648, 649, 655, cloud sounding, 82 656, 658, 659, 664 cloud tracking, 109 cyclone, 114 clouds, 79 cyclonic feature, 113 cold plasma, 519, 621 cyclotron cold-core feature, 109 emission, 678 collisional broadening, 458 frequency, 679 comet, 21, 74, 141, 142, 172, 263, 513, 537 radiation, 175 capture, 273 close encounter, 449 Dardanus Sulcus, 377 impact, 159 dark floor deposit, 388 influx, 60, 73, 137 Dark Polar Region, 194, 661, 662 Jupiter family, 141, 270, 277 dayglow, 131 nucleus, 271 Dazhbog Patera, 317 oxygen flux, 273 debris apron, 409, 412 sampling, 31 Debye length, 539 short period, 271 decametric radiation, 175, 520, 521, 538, 539, 544, 554, 578, 597, cometary impactor, 404 617, 626, 640, 671 cometary nucleus, 421 decimetric emission, 176, 242 Composite Infrared Spectrometer, 174 deep convection, 72 condensate, 117 deep probe, 31 condensate cloud, 71 Deep Space Network, 281 condensation, 60, 86, 87, 117 deep troposphere, 74 conductance, 517 deep water cloud, 100 conductivity deep winds, 54 Birkeland, 515 deformation radius, 117, 120 Deimos, 244, 246 Hall, 515 density wave, 585 Pedersen, 515 deuterated hydrogen, 63 conservative scatterer, 87 deuterium, 22, 24, 35, 39, 69, 188 contraction, 37, 52 experiment, 39 convection, 36, 44, 54, 73, 107, 117, 121 diacetylene, 67, 134, 140 critical, 28 diapir, 336, 341, 391, 486 magnetospheric, 620, 625 differential rotation, 45, 50 moist, 80, 86, 118, 121 differentially rotating cylinder, 109, 121 convective adjustment, 120 diglycine, 354 convective overturn, 298 Diomedes, 274 cool plasma, 656 dipole tilt, 36 Copernicus, 187 dissipation factor, 307 core, 20, 22, 26, 29, 35, 44, 46, 47, 50–53, 60 dissociative recombination, 202 erosion, 53 Doh Crater, 414, 415 Coriolis force, 45, 111, 206, 213, 284 dome crater, 414 corotation enforcement current, 609, 614 Doppler tracking, 284 correlated-k technique, 82 Doppler wind experiment, 73, 121 cosmic ray, 519 dosage unit, 490 Couette-Taylor flow, 29 double diffusion, 45 Coupled Thermosphere–Ionosphere Model, downdraft, 86, 123 212 downwelling, 86, 123 crater, 342 drag anomalous dome, 430 gas, 25, 268–270 central dome, 430 ion-neutral frictional, 647 central pit, 429 plasma, 253, 258, 265 complex, 429 Poynting-Robertson, 253, 259, 265 morphology, 427, 428 Dungey cycle, 665 pedestal, 439 dust, 60, 66, 141, 161, 166, 168, 172, 175, 177, 178, 219, 220, 242, rate, 451 246, 253, 254, 404, 683, 685 simple, 429 Axel-Danielson, 93 size distribution, 442 Callisto, 236 crater chain, 160, 272 chemical composition, 221 Cretaceous-Tertiary impact, 166 comet, 271 cryovolcanic eruption, 337 detection, 232 cryovolcanism, 417, 419, 421 detector, 219, 221, 270 CSHELL, 196 dynamics, 235, 236 Culaan Patera, 308 ejection, 229 Curie point, 292 electromagnetic interaction, 222 current Europa, 235, 236 Birkeland, 565, 570, 571, 613 flux, 225 Pedersen, 570 force, 227, 236 © Cambridge University Press www.cambridge.org Cambridge University Press 0521818087 - Jupiter: The Planet, Satellites and Magnetosphere Edited by Fran Bagenal, Timothy E. Dowling and William B. McKinnon Index More information 710 Index dust (cont.) electron density, 518 Ganymede, 234 diurnal variation, 204 impact rate, 222 electron precipitation, 202, 204,
Recommended publications
  • High-Resolution Mosaics of the Galilean Satellites from Galileo SSI
    Lunar and Planetary Science XXIX 1833.pdf High-Resolution Mosaics of the Galilean Satellites from Galileo SSI. M. Milazzo, A. McEwen, C. B. Phillips, N. Dieter, J. Plassmann. Planetary Image Research Laboratory, LPL, University of Arizona, Tucson, AZ 85721; [email protected] The Galileo Spacecraft began mapping the Jovian orthographic projection centered at the latitude and system in June 1996. Twelve orbits of Jupiter and more longitude coordinates of the sub-spacecraft point to than 1000 images later, the Solid State Imager (SSI) is still preserve their perspective. Depending on the photometric collecting images, most far superior in resolution to geometry and scale, it may be necessary to apply a anything collected by the Voyager spacecraft. The data photometric normalization to the images. Next, the collected includes: low to medium resolution color data, individual frames are mosaicked together, and mosaicked medium resolution data to fill gaps in Voyager coverage, and onto a portion of the base map for regional context. Once very high-resolution data over selected areas. We have the mosaic is finished, it is checked to make sure that the tie been systematically processing the SSI images of the and match points were correct, and that the frames mesh. Galilean satellites to produce high-resolution mosaics and to We produce 3 final products: (i) an SSI-only mosaic, (ii) SSI place them into the regional context provided by medium- images mosaicked onto regional context, and (iii) the resolution mosaics from Voyager and/or Galileo. addition of a latitude-longitude grid to the context mosaic. Production of medium-resolution global mosaics is The purpose of this poster is to show the mosa- described in a companion abstract [1].
    [Show full text]
  • Appendix Contains a Timeline, Galileo Mission Overview (June 1996–December 1997), and a Set of Quick–Look Orbit Facts Sheets
    A P P E N D I X This appendix contains a timeline, Galileo Mission Overview (June 1996–December 1997), and a set of Quick–Look Orbit Facts sheets. The essentials of each orbit are listed. We have provided them as a handy reference while the orbiter’s tour progresses in the months to come. Appendix • Page A-1 Project Galileo Quick-Look Orbit Facts Appendix • Page A- 5 PROJECT GALILEO QUICK-LOOK ORBIT FACTS Fact Sheet Guide Title Quick Facts Indicates the target satellite and the number of the This section provides a summary listing of the orbit in the satellite tour. In this example, Ganymede is characteristics of the target satellite encounter as well the target satellite on the first orbit of the orbital tour. as the Jupiter encounter. PROJECT GALILEO QUICK-LOOK ORBIT FACTS PROJECT GALILEO QUICK-LOOK ORBIT FACTS Ganymede - Orbit 1 Ganymede - Orbit 1 Encounter Trajectory Quick Facts Ganymede Flyby Geometry +30 min Ganymede Encounter Earth Sun 27 June 1996 Ganymede C/A +15 min 06:29 UTC Ganymede C/A Altitude: 844 km Jupiter 6/27 6/26 133 times closer than VGR1 70 times closer than VGR2 Earth Speed: 7.8 km/s 0W -15 min Sun Jupiter C/A 6/28 Latitude: 30 deg N Longitude: 112 deg W 270W -30 min Perijove Io 28 June 1996 00:31 UTC Europa Jupiter Range: 11.0 Rj Time Ordered Listing Ganymede 6/29 Earth Range: 4.2 AU EVENT TIME (PDT-SCET) EVENT (continued) TIME (PDT-SCET) OWLT: 35 min Start Encounter 23 June 96 09:00 Europa C/A (156000 km) 18:22 Callisto Start Ganymede-1 real-time survey (F&P) 09:02 Europa global observation (NIMS/SSI) 18:43
    [Show full text]
  • The Global Colors of Ganymede As Seen by Galileo Ssi
    Lunar and Planetary Science XXX 1822.pdf THE GLOBAL COLORS OF GANYMEDE AS SEEN BY GALILEO SSI. T. Denk1, K.K. Khurana2, R.T. Pappalardo3, G. Neukum1, J.W. Head3, T.V. Rosanova4, and the Galileo SSI Team, 1DLR, Institute of Planetary Exploration, 12484 Berlin, Germany, e-mail: [email protected], 2UCLA, Los Angeles, CA, 3Brown University, Providence, RI, 4USGS, Flagstaff, AZ. Ganymede, as observed by the Galileo SSI Dark vs. bright and polar terrain. The bright camera, shows a banded, latitude-dependent color ("sulci") and dark ("regio") areas as well as the polar structure which is partly independent of geologic caps are the most obvious surface features on Ganyme- units. A correlation of the surface color with the de when seen at global scale from large distances. The magnetic field of Ganymede is reported, with areas albedo of the polar caps on the leading side is highest, exposed to the charged particles coming from the of the "regio" areas lowest, and of the "sulci" areas in Jovian environment often being redder than shielded between. (The polar caps of the trailing side will be terrain. The northern polar cap can be subdivided discussed below.) The bright polar caps are probably into a whitish area on the pole and the leading side, caused by water frost (e.g., Smith et al. 1981, Hillier and a darker, reddish area on the trailing side. The frost of the south-polar cap appears less opaque than in the north. The spectra of the dark "regio" areas are redder at the long SSI wavelength range than those of the brighter "sulci" terrains, but not significantly different at short SSI wavelengths.
    [Show full text]
  • Rituals for the Northern Tradition
    Horn and Banner Horn and Banner Rituals for the Northern Tradition Compiled by Raven Kaldera Hubbardston, Massachusetts Asphodel Press 12 Simond Hill Road Hubbardston, MA 01452 Horn and Banner: Rituals for the Northern Tradition © 2012 Raven Kaldera ISBN: 978-0-9825798-9-3 Cover Photo © 2011 Thorskegga Thorn All rights reserved. Unless otherwise specified, no part of this book may be reproduced in any form or by any means without the permission of the author. Printed in cooperation with Lulu Enterprises, Inc. 860 Aviation Parkway, Suite 300 Morrisville, NC 27560 To all the good folk of Iron Wood Kindred, past and present, and especially for Jon Norman whose innocence and enthusiasm we will miss forever. Rest in Hela’s arms, Jon, And may you find peace. Contents Beginnings Creating Sacred Space: Opening Rites ................................... 1 World Creation Opening ....................................................... 3 Jormundgand Opening Ritual ................................................ 4 Four Directions and Nine Worlds: ........................................ 5 Cosmological Opening Rite .................................................... 5 Warding Rite of the Four Directions ..................................... 7 Divide And Conquer: Advanced Group Liturgical Design. 11 Rites of Passage Ritual to Bless a Newborn .................................................... 25 Seven-Year Rite ..................................................................... 28 A Note On Coming-Of-Age Rites .......................................
    [Show full text]
  • Chapter Vi Report of Divisions, Commissions, and Working
    CHAPTER VI REPORT OF DIVISIONS, COMMISSIONS, AND WORKING GROUPS Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 DIVISION I FUNDAMENTAL ASTRONOMY Division I provides a focus for astronomers studying a wide range of problems related to fundamental physical phenomena such as time, the intertial reference frame, positions and proper motions of celestial objects, and precise dynamical computation of the motions of bodies in stellar or planetary systems in the Universe. PRESIDENT: P. Kenneth Seidelmann U.S. Naval Observatory, 3450 Massachusetts Ave NW Washington, DC 20392-5100, US Tel. + 1 202 762 1441 Fax. +1 202 762 1516 E-mail: [email protected] BOARD E.M. Standish President Commission 4 C. Froeschle President Commisison 7 H. Schwan President Commisison 8 D.D. McCarthy President Commisison 19 E. Schilbach President Commisison 24 T. Fukushima President Commisison 31 J. Kovalevsky Past President Division I PARTICIPATING COMMISSIONS: COMMISSION 4 EPHEMERIDES COMMISSION 7 CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY COMMISSION 8 POSITIONAL ASTRONOMY COMMISSION 19 ROTATION OF THE EARTH COMMISSION 24 PHOTOGRAPHIC ASTROMETRY COMMISSION 31 TIME Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 COMMISSION 4: EPHEMERIDES President: H. Kinoshita Secretary: C.Y. Hohenkerk Commission 4 held one business meeting.
    [Show full text]
  • Lunar and Planetary Science XXIX 1918.Pdf
    Lunar and Planetary Science XXIX 1918.pdf TIME-STRATIGRAPHY AND CRATER RETENTION AGES OF GEOLOGIC UNITS ON CALLISTO. R. Wagner1, U. Wolf1, G. Neukum1, J. E. Klemaszewski2, R. Greeley2, and the Galileo Imaging Team. 1DLR, Institute of Planetary Exploration, D-12489 Berlin, Germany; 2Dept. of Geology, Arizona State University, Tempe AZ 85287, USA. E-mail: Ro- [email protected] Introduction: examined in detail due to limited image resolution [1,8]. During its two years in orbit around Jupiter, the Galileo SSI Schenk [8] mapped areas of bright material, especially in the camera has nearly completed global image coverage of the high latitudes, whose albedo is about a factor of 2 higher than second-largest icy Galilean satellite Callisto at a regional the average albedo of the dark cratered plains. These areas scale of 1 to 2 km/pxl. In addition, selected regions were were covered by either fore-shortened or smeared Voyager imaged at considerably higher resolution down to 30 m/pxl. images, hence are less suitable for crater counts. These re- In this paper, we present a time-stratigraphy of global, re- gions could not be imaged by the Galileo SSI camera. gional and local geologic units on this satellite based on Ages of multi-ring structures. photogeologic mapping and crater size-frequency measure- Large multi-ring basins are the dominant structures on ments in selected regions. Callisto and may be used as time markers in Callisto’s his- Methodology: tory. Many SSI observations ranging in scale from 1 km/pxl Albedo and morphology are used as basic criteria to dis- to 30 m/pxl were targeted to these impact basins.
    [Show full text]
  • Impact Craters on Pluto and Charon Indicate a Deficit of Small Kuiper Belt Objects
    Impact Craters on Pluto and Charon Indicate a Deficit of Small Kuiper Belt Objects K. N. Singer1*, W. B. McKinnon2, B. Gladman3, S. Greenstreet4, E. B. Bierhaus5, S. A. Stern1, A. H. Parker1, S. J. Robbins1, P. M. Schenk6, W. M. Grundy7, V. J. Bray8, R. A. Beyer9,10, R. P. Binzel11, H. A. Weaver12, L. A. Young1, J. R. Spencer1, J. J. Kavelaars13, J. M. Moore10, A. M. Zangari1, C. B. Olkin1, T. R. Lauer14, C. M. Lisse12, K. Ennico10, New Horizons Geology, Geophysics and Imaging Science Theme Team†, New Horizons Surface Composition Science Theme Team†, New Horizons Ralph and LORRI Teams†. Published 1 March 2019, Science 363, 955 (2019) DOI: 10.1126/science.aap8628 1Southwest Research Institute, Boulder, CO 80302, USA. 2Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA. 3University of British Columbia, Vancouver, BC V6T 1Z4, Canada. 4Las Cumbres Observatory, Goleta, CA 93117, USA, and the University of California, Santa Barbara, CA, 93106 USA. 5Lockheed Martin Space Systems Company, Denver, CO 80127, USA. 6Lunar and Planetary Institute, Houston, TX 77058, USA. 7Lowell Observatory, Flagstaff, AZ 86001, USA. 8University of Arizona, Tucson, AZ 85721, USA. 9Carl Sagan Center at the Search for Extraterrestrial Intelligence (SETI) Institute, Mountain View, CA 94043, USA. 10National Aeronautics and Space Administration (NASA) Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA. 11Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 12Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA. 13National Research Council of Canada, Victoria, BC, Canada. 14National Optical Astronomy Observatory, Tucson, AZ 26732, USA.
    [Show full text]
  • The Origin of Ganymede's Polar Caps
    Icarus 191 (2007) 193–202 www.elsevier.com/locate/icarus The origin of Ganymede’s polar caps Krishan K. Khurana a,∗, Robert T. Pappalardo b, Nate Murphy c, Tilmann Denk d a Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, CA 90095, USA b Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA c Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309-0392, USA d Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin, Germany Received 7 August 2006; revised 13 April 2007 Available online 5 May 2007 Abstract Since their discovery in Voyager images, the origin of the bright polar caps of Ganymede has intrigued investigators. Some models attributed the polar cap formation to thermal migration of water vapor to higher latitudes, while other models implicated plasma bombardment in brightening ice. Only with the arrival of Galileo at Jupiter was it apparent that Ganymede possesses a strong internal magnetic field, which blocks most of the plasma from bombarding the satellite’s equatorial region while funneling plasma onto the polar regions. This discovery provides a plausible explanation for the polar caps as related to differences in plasma-induced brightening in the polar and the equatorial regions. In this context, we analyze global color and high resolution images of Ganymede obtained by Galileo, finding a very close correspondence between the observed polar cap boundary and the open/closed field lines boundary obtained from new modeling of the magnetic field environment. This establishes a clear link between plasma bombardment and polar cap brightening.
    [Show full text]
  • Program to Technical Sessions Thirtieth Lunar and Planetary
    LUNAR AND PLANETARY SCIENCE CoNFERENCE MARCH 15-19, 1999 HOUSTON, TEXAS SPONSORED BY NATIONAL AERONAUTICS AND SPACE ADMINISTRATION L UNAR AND PLANETARY INSTITUTE NASA JOHNSON SPACE CENTER Program to Technical Sessions THIRTIETH LUNAR AND PLANETARY SCIENCE CONFERENCE March 15-19, 1999 Houston, Texas Sponsored By National Aeronautics and Space Administration Lunar and Planetary Institute NASA Johnson Space Center Program Committee Carl Agee, Co-Chair, NASA Johnson Space Center David Black, Co-Chair, Lunar and Planetary Institute Cone! Alexander, Carnegie Institution of Washington Carlton Allen, Lockheed Martin Donald Bogard, NASA Johnson Space Center Harold Connolly, Jr., California Institute ofTechnology Cassandra Coombs, College of Charleston John Grant, NASA Headquarters Friedrich Horz, NASA Johnson Space Center Michael Kelley, Rensselaer Polytechnic Institute Walter Kiefer, Lunar and Planetary Institute David Kring, University of Arizona Renu Malhotra, Lunar and Planetary Institute Timothy Parker, Jet Propulsion Laboratory Frans Rietmeijer, University of New Mexico Graham Ryder, Lunar and Planetary Institute Susan Sakimoto, NASA Goddard Space Flight Center Paul Spudis, Lunar and Planetary Institute Meenakshi Wadhwa, Field Museum of Natural History, Chicago LPI ROOM C 145 FIRST FLOOR Robert R. Gilruth Recreation Facility Building 207 ROOM B ,.. SECOND FLOOR Robert R. Gilruth Recreation Facility Building 207 CONFERENCE INFORMATION Registration-LPI Open House A combination Registration/Open House will be held Sunday, March 14, 1999, from 5:00p.m. until 8:00p.m. at the Lunar and Planetary Institute. Registration will continue in the Gilruth Center, Monday through Thursday, 8:00a.m. to 5:00p.m. A shuttle bus will be available to transport participants between the LPI and local hotels Sunday evening from 4:45 p.m.
    [Show full text]
  • Database for Comparative Investigation of Geodynamic Processes in the Solar System Europlanet a Joint Research Activity R. Jauma
    Database for Comparative Investigation of Geodynamic Processes in the Solar System Europlanet A Joint Research Activity R. Jaumann, T. Roatsch DLR, Institute of Planetary Research Katlenburg-Lindau, May 2-4, 2007 Folie 1 R. Jaumann, Inst. of Planetary Res. - Exploration of the planets, their satellites and the small bodies (comets, asteroids) geology, geodesy, and morphology structure, composition and age - Study and modelling of geological, physical and chemical processes and the evolution of the planets - Comparative planetology: what can we learn from other planets about the evolution of the Earth? Folie 2 R. Jaumann, Inst. of Planetary Res. Present and Future Deep Space Projects - Mars Express (ESA) Launch 2003 - Cassini/Huygens (NASA/ESA) Launch 1995 Saturn and its satellites - Rosetta (ESA) Launch 2004 Comet 67P/Chruyumov-Gerasimenko - Venus Express (ESA) Launch 2005 - Dawn (NASA) Launch 30. Juni 2007 Asteroiden Ceres und Vesta • Exomars (ESA) Launch 2013 • BepiColombo to Mercury (ESA) Launch 2014 • Moon (DLR) Launch 2013 Folie 3 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Folie 4 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Folie 5 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Folie 6 R. Jaumann, Inst. of Planetary Res. Planetary surfaces are boundary layers characterized by a set of endogenic and exogenic processes that alter and remodel their shape and composition. Major geodynamic processes: cosmic collisions, Zur Anzeige wird der QuickTime™ Dekompressor „H.264“ volcanism, benötigt. tectonism erosion. As a boundary layer, surfaces record the results of all internal and external interactions and are thus the witness of planetary evolution Folie 7 R.
    [Show full text]
  • Gany 15Ppi.Pdf
    180° 0° 55° –55° . Geb Ur Sulcus 210° 330° 150° . Latpon 30° 60° –60° . Namtar . Agrotes Elam Philae Sulcus Sulci . Nigirsu Borsip Sulcus Lakhmu Fossae 70° –70° 240° 300° 60° 120° Galileo . Humbaba . Lagamal 80° . Wepwawet –80° . Teshub 90° 270° 90° 270° . Hathor Regio Bubastis Sulci Anubis . Neheh Dukug Sulcus 80° –80° Anzu Hamra. Patera . Adapa Etana GILGAMESH . Kishar . Aya 120° 60° 300° 240° . Ptah –70° . 70° Isis Ninkasi . Anu Enlil . Zaqar . Gula . Tanit . Sapas . Achelous Sebek 60° –60° 30° 150° 330° Mummu Sulci 210° . Adad 55° –55° 0° 180° North Pole South Pole 180° 170° 160° 150° 140° 130° 120° 110° 100° 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 350° 340° 330° 320° 310° 300° 290° 280° 270° 260° 250° 240° 230° 220° 210° 200° 190° 180° 57° 57° Geb . Enlil Elam Sulci . Asshur . Sin Ur Sulcus 50° 50° Aquarius Sulcus . Kadi Nun Sulci . Hershef Mashu Sulcus . Upuant Lakhmu Fossae . Galileo . Nefertum Mont Ur . Shu Byblus Sulcus Nippur Sulcus Sulcus Philus Sulcus 40° Enki Catena 40° Zu Fossae Nergal . Akitu Sulcus Tettu Facula . Lumha . Harakhtes . Halieus Abydos . Gir . Perrine Regio Khnum . Amon Facula Regio Kulla Catena . Anhur . Marius Nippur Sulcus M . Ammura Zakar . 30° Sati Mor a Bigeh . s 30° . Mehit Min . h Akhmin Facula Haroeris u Neith . Sicyon Sulcus Ta-urt S Facula Edfu Xibalba Sulcus Nineveh Sulcus u Anshar Sulcus l c Facula u . Ba'al s Epigeus . Bau Diment . Lugalmeslam Epigeus . Ilah Atra-hasis Hermopolis . Facula 20° Khepri Gushkin 20° . Ea . Heliopolis . Geinos Nidaba Nanshe . Facula Memphis Catena Seima . Agreus Busiris Chrysor.. Aleyin .
    [Show full text]
  • Abundances, 62 Accelerometer, 200 Accretion, 27, 52, 300 Disk, 23
    INDEX abundances, 62 density, 244 accelerometer, 200 leading hemisphere, 245 accretion, 27, 52, 300 amino acid, 354 disk, 23, 29, 30, 52, 219 Amirani flow field, 309 efficiency, 52 ammonia, 22, 44, 59, 60, 63, 64, 73, 74, 79, 82, 86, 89, 91, 110, gas, 30, 31 117, 136, 137, 173, 291, 297, 299, 300 isolation mass, 28 abundance, 107 oligarchic growth, 28 depletion, 71 rapid, 29 ice, 68, 90-92, 100 rate, 27, 30 mixing ratio, 123 runaway, 28 photolysis, 72, 97 slow, 29 solid, 86 acetylene, 67, 129, 131, 132, 138 ammonia cloud, 71, 80, 82 Achilles, 264 ammonia hydrate, 297 Adastea, 673 ammonium hydrosulfide, 68, 72, 79, 83, 86, 89, 91, 100 adiabat ammonium hydrosulfide cloud, 79 dry, 116 ammonium salt, 67 moist, 116 amorphous ice, 7 4 adiabatic cooling, 80 Ampere's law, 540 adiabatic invariant, 622 Ananke, 265, 268 adiabatic mirroring, 651 angular momentum, 23, 27-29, 31, 122, 655 Adlinda, 417-419 Anshar Sulcus, 367, 374-376 Adrastea, 237, 241, 243, 244, 246, 247, 249, 254, 256, 258, 498, anticyclone, 114 671 Antilochus, 27 4 aeronomy, 190, 214 approach movies, 106 aerosol, 60, 67, 82, 83, 87, 91, 98, 109, 111, 463 aqueous alteration, 268 absorption, 149 Arbela Sulcus, 368, 376, 377 carbonaceous, 97 argon, 20, 26, 37, 74 density, 82 Ariel, 122 extinction, 95 arsenic, 67 formation, 98 arsine, 66, 67, 136 loading, 143 Asgard, 417-419 mixing ratio, 95 Asgard Basin, 401, 402 production, 151 asteroid, 451 SL9, 150 differentiated, 268 Agenor Linea, 337 main belt, 263, 271 airglow, 384 asthenosphere, 286 albedo, 91 asthenospheric flow, 366 bolometric,
    [Show full text]