Database for Comparative Investigation of Geodynamic Processes in the Solar System

Europlanet A Joint Research Activity

R. Jaumann, T. Roatsch DLR, Institute of Planetary Research Katlenburg-Lindau, May 2-4, 2007

Folie 1 R. Jaumann, Inst. of Planetary Res. - Exploration of the planets, their satellites and the small bodies (comets, asteroids) geology, geodesy, and morphology structure, composition and age

- Study and modelling of geological, physical and chemical processes and the evolution of the planets

- Comparative planetology: what can we learn from other planets about the evolution of the Earth?

Folie 2 R. Jaumann, Inst. of Planetary Res. Present and Future Deep Space Projects

- Mars Express (ESA) Launch 2003 - Cassini/Huygens (NASA/ESA) Launch 1995 Saturn and its satellites - Rosetta (ESA) Launch 2004 Comet 67P/Chruyumov-Gerasimenko - Venus Express (ESA) Launch 2005 - Dawn (NASA) Launch 30. Juni 2007 Asteroiden Ceres und Vesta

• Exomars (ESA) Launch 2013 • BepiColombo to Mercury (ESA) Launch 2014 • Moon (DLR) Launch 2013

Folie 3 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Folie 4 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Folie 5 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Folie 6 R. Jaumann, Inst. of Planetary Res. Planetary surfaces are boundary layers characterized by a set of endogenic and exogenic processes that alter and remodel their shape and composition.

Major geodynamic processes: cosmic collisions, Zur Anzeige wird der QuickTime™ Dekompressor „H.264“ volcanism, benötigt. tectonism erosion.

As a boundary layer, surfaces record the results of all internal and external interactions and are thus the witness of planetary evolution

Folie 7 R. Jaumann, Inst. of Planetary Res. Overall Objectives for FP7

- Build a major planetary geo-information system that will provide a comprehensive data base of planetary surface features based on the results of past and ongoing space missions.

- Develop tools to mine the tremendous amount of information.

- Utilize the data base for various applications of geological and geophysical evaluations and interpretations of the solar system.

- By comparing planetary geology with terrestrial geology these database will also help to understand the origin and evolution of our Earth.

Folie 8 R. Jaumann, Inst. of Planetary Res. First Step for N7 - precurser to FP7 - coordinate the thematic field of surfaces and interiors

- update the inventory of resources

- prepare user requirements

=> develop a concept for a planetary geo-information system and show an representative example

Folie 9 R. Jaumann, Inst. of Planetary Res. Internal working projects

The internal working projects comprises the development of a classification system and generation of a data base for the following main topics: - impact cratering, - volcanism, - tectonism, - erosion, material transport and deposition.

Access to all data of planetary surfaces is given via Regional Planetary Image Facilities (RPIFs) and the Planetary Data System (PDS).

Folie 10 R. Jaumann, Inst. of Planetary Res. Coordinating research institute and central node: Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany also Regional and Planetary Image Facility (RPIF) site

Cooperations: - Remote Sensing of the Earth and Planets, Free University, Berlin, Germany - Institute of Planetology, University of Münster, Germany - Universitá d' Annunzio, IRSPS, Pescara, Italy - Istituto di Astrofisica Spaziale, Frascati, Italy, also RPIF site - Lab. IDES-CNRS, Paris-Sud, Orsey, France, also RPIF site - Labotatoire de Planétologie et Géodynamique Université, Nantes, France - Institut de Physique du Globe de Paris, Departement de Géophysique Spatiale et Planetaire, Paris, France - IAS Institut d' Astrophysique Spatiale, Université de Paris-Sud, Orsey, France - University of Oulu, Oulu, Finland, also RPIF site - Brown University, Providence, Rhode Island, USA, also RPIF site - Arizona State University, Tempe, USA, also RPIF site - Collegium Budapest, Institute for Advanced Study, Budapest, Hungaria

Folie 11 R. Jaumann, Inst. of Planetary Res. Overall Objectives for FP7

- Build a major planetary geo-information system that will provide a comprehensive data base of planetary surface features based on the results of past and ongoing space missions.

- Develop tools to mine the tremendous amount of information.

- Utilize the data base for various applications of geological and geophysical evaluations and interpretations of the solar system.

- By comparing planetary geology with terrestrial geology these database will also help to understand the origin and evolution of our Earth.

Folie 12 R. Jaumann, Inst. of Planetary Res.

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Ganymed, Neith crater, 150 km Earth, Manicouagan crater, 72 km Moon, Taruntius crater, 8.5 km

Mercury, Schubert crater, 160 km Mars, crater in Arabia Terra, 9.5 km

Folie 13 R. Jaumann, Inst. of Planetary Res. Volcanism

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Earth, Mount St. Helens Enceladus, South pole

Zur Anzeige wird der QuickTime™ Zur Anzeige wird der QuickTime™ Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ Dekompressor „TIFF (Unkomprimiert)“ Dekompressor „TIFF (Unkomprimiert)“ benötigt. benötigt. benötigt.

Venus, Maat Mons Mars, Apollinaris Paters Moon, Hadley Rille

Folie 14 R. Jaumann, Inst. of Planetary Res. Tectonism

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Moon, graben Mars, Acheron Fossae

Mercury, Discovery Scarp Europa Ganymed

Folie 15 R. Jaumann, Inst. of Planetary Res. Erosion 1

Mars

Earth Titan

Folie 16 R. Jaumann, Inst. of Planetary Res. Erosion 2

Folie 17 R. Jaumann, Inst. of Planetary Res. Erosion 3

Mars

Titan

Mars

100 km

Folie 18 R. Jaumann, Inst. of Planetary Res. Sedimentation

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Mars Earth

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Titan Mars

Folie 19 R. Jaumann, Inst. of Planetary Res. Complex interaction of processes

Folie 20 R. Jaumann, Inst. of Planetary Res. Complex interaction of processes

Folie 21 R. Jaumann, Inst. of Planetary Res. Complex interaction of processes

Folie 22 R. Jaumann, Inst. of Planetary Res. Tyras Vallis

Folie 23 R. Jaumann, Inst. of Planetary Res. Elysium Mons

Folie 24 R. Jaumann, Inst. of Planetary Res. Cartography

Sample Map from HRSC on Mars Express

Folie 25 R. Jaumann, Inst. of Planetary Res. Data Mining

Folie 26 R. Jaumann, Inst. of Planetary Res. Improving data by filtering the attributes E.g. TES data over the caldera of Olympus Mons

A HRSC Image for orientation

B Raw unfiltered TES information - The color shows surface temperature

C Filtered by the “quality” attribute

D Improved data with quality attributes better than zero and recorded between 1 am and 5 am.

Folie 27 R. Jaumann, Inst. of Planetary Res. TES and MOLA

Folie 28 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Rift Flank Uplift and Heat Flow

¾ Shape of the rift flank uplift indicates high heat flow and low elastic thickness for early Mars,

Te ~10 km

(Grott, Hauber, Werner, Kronberg and Neukum, GRL, 2005)

Folie 29 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Martian Seismicity

¾ Seismic modeling based on thermo-elastic stresses ¾ Resulting seismic moment budget distributed over mapped surface faults ¾ Predict the distribution and strength of Mars-quakes

(Knapmeyer, Oberst, Hauber, Wählisch, Deuchler and Wagner, JGR, 2006)

Folie 30 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Cryovolcanism

fractured and heavily cratered

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ ridges plains plains benötigt.

„tectonically deformed regions („tiger stripes“ increasing particle size Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

100km

Folie 31 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Cryovolcanism

¾ Degree-one convection may explain geologic dichotomy ¾ Requires: ƒ Core radius less than 120 km

Temperature [K] ƒ Energy input at a rate of 3.0 – 5.5 GW ¾ Consistent with observed SPT heat flow

(Grott, Sohl, Hussmann, Icarus, submitted)

Folie 32 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Folie 33 R. Jaumann, Inst. of Planetary Res. Data base on cometary chemistry:

107 comets (up to 12/2004)

Production rates:

CN, C3, C2, NH2, NH, CH, O, CO, CO2, OH, H2O, as well as Afrho, with rh and Delta.

Planned completion with

HCN, HNC, CS, H2S, H2CO, CH3OH, CH3CN, C2H2 und C2H6

=> Heike Rauer

Folie 34 R. Jaumann, Inst. of Planetary Res. #3696 residual ice in crater, 89°E/78°N

25 km Folie 35 R. Jaumann, Inst. of Planetary Res. Hesperia Planum - »Butterfly« Impact Crater

Science Case: Dating Planetary Surfaces

Folie 36 R. Jaumann, Inst. of Planetary Res. Geological Activity

Folie 37 R. Jaumann, Inst. of Planetary Res. Superposition

Moon Delisle (De,25 km) und Diophantus (Di, 18 km)

Sequence 1: Ejecta Imbrium 2: Mare 3: Ejekta Crater Delisle 4: younger mare 5: Ejekta Crater Diophantus Sample 15455 (Spur Crater (rim); Station 7, Apollo 15)

Impact melt (?) (Imbrium basin)

Pre-nectarian anorthositic Norit Radiometric dating

Basaltic Volcanism Study Project (1981) Crater Density

Ganymed ( G28: Nicholson Regio) Ganymed (Galileo G28: Harpagia Sulcus)

High crater density = older Low crater density = younger Merkur:

Relative Sequence (older - younger: Tolstoj - Pushkin - Caloris Moon: Reference for crater density age estimation

(Hartmann, 1983; Neukum 1983; Neukum & Ivanov, 1994; Neukum et al., 2001)

Polynom 11. Order

Absolut calibration 1) Radiometric ages 2) Distribution of asteroids and comets Relative crater distribution on Moon Rel. Distribution of Asteroids

Similar shape --> Asteroids are amin impactors on the Moon Absoluter ages of the Moon by sample calibration Zeitstratigraphische Systeme und Perioden des Erdmondes und ihre zugeordneten Kraterhäufigkeiten und Modellalter Geomorphologische Kartierung und Altersbestimmung

Folie 47 R. Jaumann, Inst. of Planetary Res.

Absolut ages by impact probabilities

Estimation of the Distribution of Earth crossing objects -> Impact probabilitiy -> Crater density -> age Transformation of crater density distribution to other objects e.g. Merkur

Same shape -> same impactor family -> Asteroids

-> scale to object specific parameters Merkur: Impact basins

Relative sequence (older - younger): Tolstoj - Pushkin - Caloris Absolute ages are model dependent Merkur: Model chronology Model chronology of Mars: Hartmann & Neukum, 2001 Impact distribution in the outer solar system

Satellites of Jupiter Two Models: Neukum et al., 1998: Shape similar to inner solar system -> asteroids -> lunar like distribution

Zahnle et al., 1998, 2003: Different from inner solar system -> ecliptic comets -> constant impact rate Basin ages on Callisto

Neukum-Model:

Lofn = 3.86 Ga = 3.98 Ga = 4.19 Ga

Zahnle-Model:

Lofn = 1.26 Ga Valhalla = 2.30 Ga Asgard = 4.30 Ga Folie 57 R. Jaumann, Inst. of Planetary Res. Action Items: Make a proposal for combined science cases: 8) Dating planetary surfaces from cratering processes (Coustenis) 9) Quantifying the martian geochemical reservoirs (Toplis) as an example of “Sedimentary deposits on Mars”

Folie 58 R. Jaumann, Inst. of Planetary Res.