Meteoritics & Planetary Science 45, Nr 4, 638–661 (2010) doi: 10.1111/j.1945-5100.2010.01044.x Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement Joseph BOYCE1*, Nadine BARLOW2, Peter MOUGINIS-MARK1, and Sarah STEWART3 1Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96922, USA 2Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona 86001, USA 3Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts 02138, USA *Corresponding author. E-mail:
[email protected] (Received 03 December 2008; revision accepted 12 February 2010) Abstract–Some fresh impact craters on Ganymede have the overall ejecta morphology similar to Martian double-layer ejecta (DLE), with the exception of the crater Nergal that is most like Martian single layer ejecta (SLE) craters (as is the terrestrial crater Lonar). Similar craters also have been identified on Europa, but no outer ejecta layer has been found on these craters. The morphometry of these craters suggests that the types of layered ejecta craters identified by Barlow et al. (2000) are fundamental. In addition, the mere existence of these craters on Ganymede and Europa suggests that an atmosphere is not required for ejecta fluidization, nor can ejecta fluidization be explained by the flow of dry ejecta. Moreover, the absence of fluidized ejecta on other icy bodies suggests that abundant volatiles in the target also may not be the sole cause of ejecta fluidization. The restriction of these craters to the grooved terrain of Ganymede and the concentration of Martian DLE craters on the northern lowlands suggests that these terrains may share key characteristics that control the development of the ejecta of these craters.