A Breadth of Vision

Total Page:16

File Type:pdf, Size:1020Kb

A Breadth of Vision tant amplitude. A feedback circuit (a phase where material probes cannot endure, e. g. bubbles in water, where the velocities of locked loop) adjusts frequency and phase in flames, explosions, combustion, acids. both components may be determined sepa­ of this oscillator to track that of the receiv­ Besides the optical systems discussed — rately, flames (with graphite particles), ed photodetector signal. This involves reference beam, dual focus, cross-beam — sediment transport in rivers and oceans, some inertia to overcome intervals of In­ there are several others, Including tele­ powdered materials in air and others. adequate received signal, but a continuous scopic with up to 1 km range and glass Another field is the study of turbulence output is available in terms of the Doppler fibre systems capable of measuring inside which is now possible with a higher degree frequency and analog voltage. blood vessels. Other refinements in optical of sophistication. An area that has at­ systems allow the flow direction to be dis­ tracted the curiosity of many physicists is Very Few Photons: the Digital Cor­ tinguished (referring to equation (4), posi­ that of hydrodynamic instabilities4).In relator tive and negative ωD cannot be distinguish­ some well-defined geometries, the transi­ The Digital Correlator works well even ed experimentally) and the simultaneous tion from laminar to turbulent flow occurs with very low received light levels, fairly ac­ measurement of two or three components. via several intermediate modes of fluid curate velocity estimates being obtained Velocities measured range from 0.1 µm/s flow, characterized by well-defined fre­ from as little as 50 detected photons. A fur­ to 1000 m/s. Once assembled, equipment quencies and wave numbers. A first step ther advantage is its "democratic" opera­ works reliably and can be operated by un­ towards interpreting these phenomena is a ting principle, i.e. all received photons are skilled labour. theoretical model due to Landau which is treated alike. Hence statistical and informa­ On the other hand, further development formally analogous to the mean-field theo­ tion analysis may be applied to obtain the may still be required if one wants to ry of continuous phase transition due to limiting accuracy of results. By compari­ measure at very large/very small dimen­ Landau and Lifschitz. son, threshold devices which are used in sions, if extremely high/extremely low the counter and tracker introduce a degree velocities are expected, if high accuracy of arbitrariness, e. g. in the level in (relative error smaller than 10-3) or good BIBLIOGRAPHY threshold devices, which makes a similar data on the statistics of turbulence are ask­ 1. Durst F., Melling A. and Whitelaw J.H., Prin­ assessment of results difficult. ed for, or if flow at not easily accessible ciples and Practice of Laser Doppler Anemome­ Photomultiplier pulses, each one repre­ locations is to be studied. Examples are try (Academic Press) 1976. senting a single detected photon, are con­ measurements in the boundary layer at the 2. Durrani T.S. and Greated C.A., Laser Sys­ verted to pulses of standard amplitude and wing of airborne aircraft, near the propeller tems in Flow Measurement (Plenum Press) duration, and the number registered in of a ship while moving on the ocean, or 1977. equal time slots is recorded. Using a shift between blades of high-speed turbines. 3. Cummins H.Z. and Pike E.R., (Eds.) Photon register delay line, many multipliers and Not surprisingly, laser Doppler anemo­ Correlation Spectroscopy and Velocimetry (Ple­ stores, the digital, discrete, truncated form metry has revitalized several areas of fluid num Press) 1977. of the intensity autocorrelation function is mechanics research. Besides the topics 4. Swinney H.L. and Gollub J.P. "The Transi­ accumulated in the stores. If I(t) is light in­ mentioned already, it provides a means of tion to Turbulence", Physics Today 31 (1978) 8, tensity, the function so obtained is, except studying two-phase flows, for example p. 41. for unessential factors, an estimate of the autocorrelation function : (9) A Breadth of Vision By the Wiener-Khintchine theorem, the Fourier transformed of G(τ) is the spec­ Wolfgang Gentner, founder member of — tracer methods, thermally induced pho­ trum. In the present case, the spectrum EPS and member of the first Executive toluminescence, track sensitive methods, contains a maximum at the most prominent Committee, has died at the age of 74. A etc., to the solution of archaeological Doppler frequency ωD. In addition, there is keen promoter of European co-operation in puzzles. He was able to trace the origins of instrumental broadening due to the finite physics, Gentner's influence has been felt the silver to be found in old coins and by width of laser beams and possibly further in the development of a number of Euro­ applying tracer techniques to identifying broadening due to velocity fluctuations, pean scientific collaborations. the origins of pottery, proved that trade in i.e. turbulence. Basically a nuclear physicist, he was one ancient times was much freer than had A trade-off is possible between measure­ of the first in the Federal Republic of Ger­ been supposed. ment time and accuracy. For best ac­ many to look towards higher energies, star­ With his breadth of interests, he was an curacy, one uses a long accumulation time, ting the first cyclotron there of 20 MeV at energetic promoter of the inter-disciplinary perhaps many seconds, to overcome the Heidelberg. He was a vigorous supporter of and cultural aims of the European Science effects of digitalization and genuine noise. CERN and for five years headed the Divi­ Foundation. He was closely involved in the On the other hand, fair estimates of veloci­ sion that brought the CERN 600 MeV foundation of the Laue-Langevin Institute ty may be obtained after short accumula­ sychro-cyclotron into operation and laun­ in Grenoble and equally enthusiastic over tion, e. g. over a fraction of a microsecond. ched the programme of physics research. the creation of Emblab. He had special con­ A number of algorithms exist to extract He served on the CERN Scientific Policy nexions with Israel and was his country's velocity information out of correlograms in Committee and as delegate to Council, be­ representative on the Minerva collaboration various circumstances. This is not restric­ ing elected President from 1972-74. His with Rehovot. ted to average velocity but includes higher particular interest was in highly unstable Founder of the Max-Planck-Institut fur moments of the velocity distribution as nuclei and excited states. Kernphysik in 1958, he was until 1972 its well. He was also interested in geology and in Executive Director. In all his activities, he the isotopic concentrations of matter and was particularly well-known for his en­ the clues they give to the origin of the couragement of young physicists, open to State of the Art Universe. With his collaborators, he was the unconventional approach and welcom­ Laser Doppler anemometry offers a non- the first in Europe to study moon rocks. He ing personalities of widely different intrusive method of measuring fluid veloci­ became an expert on dating and was active background. His breadth of vision will re­ ties, suitable for hostile environments in introducing modern physical techniques main an inspiration. 11.
Recommended publications
  • Der Mythos Der Deutschen Atombombe
    Langsame oder schnelle Neutronen? Der Mythos der deutschen Atombombe Prof. Dr. Manfred Popp Karlsruher Institut für Technologie Ringvorlesung zum Gedächtnis an Lise Meitner Freie Universität Berlin 29. Oktober 2018 In diesem Beitrag geht es zwar um Arbeiten zur Kernphysik in Deutschland während des 2.Weltkrieges, an denen Lise Meitner wegen ihrer Emigration 1938 nicht teilnahm. Es geht aber um das Thema Kernspaltung, zu dessen Verständnis sie wesentliches beigetragen hat, um die Arbeit vieler, gut vertrauter, ehemaliger Kollegen und letztlich um das Schicksal der deutschen Physik unter den Nationalsozialisten, die ihre geistige Heimat gewesen war. Da sie nach dem Abwurf der Bombe auf Hiroshima auch als „Mutter der Atombombe“ diffamiert wurde, ist es ihr gewiss nicht gleichgültig gewesen, wie ihr langjähriger Partner und Freund Otto Hahn und seine Kollegen während des Krieges mit dem Problem der möglichen Atombombe umgegangen sind. 1. Stand der Geschichtsschreibung Die Geschichtsschreibung über das deutsche Uranprojekt 1939-1945 ist eine Domäne amerikanischer und britischer Historiker. Für die deutschen Geschichtsforscher hatte eines der wenigen im Ergebnis harmlosen Kapitel der Geschichte des 3. Reiches keine Priorität. Unter den alliierten Historikern hat sich Mark Walker seit seiner Dissertation1 durchgesetzt. Sein Beitrag zur Geschichte der Kaiser Wilhelm-Gesellschaft im 3. Reich beginnt mit den Worten: „The Kaiser Wilhelm Institute for Physics is best known as the place where Werner Heisenberg worked on nuclear weapons for Hitler.“2 Im Jahr 2016 habe ich zum ersten Mal belegt, dass diese Schlussfolgerung auf Fehlinterpretationen der Dokumente und auf dem Ignorieren physikalischer Fakten beruht.3 Seit Walker gilt: Nicht an fehlenden Kenntnissen sei die deutsche Atombombe gescheitert, sondern nur an den ökonomischen Engpässen der deutschen Kriegswirtschaft: „An eine Bombenentwicklung wäre [...] auch bei voller Unterstützung des Regimes nicht zu denken gewesen.
    [Show full text]
  • ISOLDE and Nuclear Structure PG Hansen
    CHS-35 February 1992 CERN LIBRARIES, GENEY A Illlllll l!llll ll llllllll lll lllll lllll lllll lllll lllll lllll lllll llll llll CM-P00043022 The SC: ISOLDE and Nuclear Structure P.G. Hansen GENEVA 1992 The Study of CERN History is a project financed by institutions m several CERN Member States. This report presents preliminary findings, and is intended for incorporation into a more comprehensive study of CERN's history. It is distributed primarily to historians and scientists to provoke discussion, and NO PART OF IT SHOULD BE CITED OR REPRODUCED WITHOUT THE WRITTEN PERMISSION OF THE AUTHOR. Comments and criticism are welcome, and should be sent to the author at Institute of Physics and Astronomy University of Aarhus DK-8000 Aarhus Denmark. Copyright History of CERN Project, Geneva, 1992 The SC: ISOLDE and Nuclear Structure P.G. Hansen GENEVA 1992 The SC: ISOLDE and Nuclear Structure P.G. Hansen Institute of Physics and Astronomy, Aarhus University DK-8000 Aarhus 1. Introduction 2. The early interest in nuclear physics at CERN 2.1 The conferences on High-Energy Physics and Nuclear Structure and Nuclei Far From Stability 2.2 CERN's Nuclear Structure Committee (1964-66) and other scientific committees 2.3 Studies of complex nuclear reactions by radiochemical methods 2.4 Open problems in nuclear physics in the sixties and seventies 3. Experiments with muons and pions 3.1 Muonic x-rays 3.2 Pions and nuclei 3.3 Tests of quantum electrodynamics and the masses of the pion and the muon 3.4 Scattering and production of pions on nuclei 3.5 Other experiments with muons 3.6 Looking back 4.
    [Show full text]
  • Hitler's Uranium Club, the Secret Recordings at Farm Hall
    HITLER’S URANIUM CLUB DER FARMHALLER NOBELPREIS-SONG (Melodie: Studio of seiner Reis) Detained since more than half a year Ein jeder weiss, das Unglueck kam Sind Hahn und wir in Farm Hall hier. Infolge splitting von Uran, Und fragt man wer is Schuld daran Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. The real reason nebenbei Die energy macht alles waermer. Ist weil we worked on nuclei. Only die Schweden werden aermer. Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Die nuclei waren fuer den Krieg Auf akademisches Geheiss Und fuer den allgemeinen Sieg. Kriegt Deutschland einen Nobel-Preis. Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Wie ist das moeglich, fragt man sich, In Oxford Street, da lebt ein Wesen, The story seems wunderlich. Die wird das heut’ mit Thraenen lesen. Und fragt man, wer ist Schuld daran Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Die Feldherrn, Staatschefs, Zeitungsknaben, Es fehlte damals nur ein atom, Ihn everyday im Munde haben. Haett er gesagt: I marry you madam. Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn. So ist die Antwort: Otto Hahn. Even the sweethearts in the world(s) Dies ist nur unsre-erste Feier, Sie nennen sich jetzt: “Atom-girls.” Ich glaub die Sache wird noch teuer, Und fragt man, wer ist Schuld daran, Und fragt man, wer ist Schuld daran, So ist die Antwort: Otto Hahn.
    [Show full text]
  • Wolfgang GENTNER Research Director
    Who is who in CERN Research Director Wolfgang GENTNER Synchro-cyclotron Division The group of visiting scientists headed Wolfgang Gentner then returned to by Prof. A. Lagarrigue, from the Eco'k Germany where he became Prof. W. Polyfechnique in Paris, arrived at the Bothe's assistant at the Kaiser Wilhelm 25 GeV synchrotron on 1 July. Institute (now the Max-Planck Institute) The group is placing a large piece of in Heidelberg. There, he continued his experimental equipment weighing near­ work on gamma rays. In particular, he ly 100 ions in the synchrotron beam. determined their photonuclear effects on This is a propane-freon bubble chamber all the elements. For this work, he used measuring 1 x 0.5 x 0.5 m, installed in gamma rays at 17 MeV—the highest en­ time to take its first photographs on ergy gamma rays which had so far been 22 July and take part in a long experi­ obtained—produced by the reaction of ment on 8 and 9 August. After Prof. lithium when bombarded by protons B. Hahn's Group from the Swiss Univer­ at an energy of a million electronvolt. sity of Fribourg, which will take part In October, Prof. Centner will resign The protons were provided by a 1 MeV in experiments during the whole of I960, from his duties as Research Director of Van de Graaff electrostatic accelerator this is the second team of physicists the Synchro-cyclotron Division to be­ constructed by the young physicist. from the Member States to come and come Director of the Max-Planck Re­ At the beginning of 1939, Wolfgang work at CERN.
    [Show full text]
  • The Virus House      -
    David Irving The Virus House - F FOCAL POINT Copyright © by David Irving Electronic version copyright © by Parforce UK Ltd. All rights reserved No reproduction, copy or transmission of this publication may be made without written permission. Copies may be downloaded from our website for research purposes only. No part of this publication may be commercially reproduced, copied, or transmitted save with written permission in accordance with the provisions of the Copyright Act (as amended). Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages. To Pilar is the son of a Royal Navy commander. Imper- fectly educated at London’s Imperial College of Science & Tech- nology and at University College, he subsequently spent a year in Germany working in a steel mill and perfecting his fluency in the language. In he published The Destruction of Dresden. This became a best-seller in many countries. Among his thirty books (including three in German), the best-known include Hitler’s War; The Trail of the Fox: The Life of Field Marshal Rommel; Accident, the Death of General Sikorski; The Rise and Fall of the Luftwaffe; Göring: a Biography; and Nuremberg, the Last Battle. The second volume of Churchill's War appeared in and he is now completing the third. His works are available as free downloads at www.fpp.co.uk/books. Contents Author’s Introduction ............................. Solstice.......................................................... A Letter to the War Office ........................ The Plutonium Alternative....................... An Error of Consequence ......................... Item Sixteen on a Long Agenda............... Freshman................................................... Vemork Attacked.....................................
    [Show full text]
  • Bruno Touschek in Germany After the War: 1945-46
    LABORATORI NAZIONALI DI FRASCATI INFN–19-17/LNF October 10, 2019 MIT-CTP/5150 Bruno Touschek in Germany after the War: 1945-46 Luisa Bonolis1, Giulia Pancheri2;† 1)Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany 2)INFN, Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy Abstract Bruno Touschek was an Austrian born theoretical physicist, who proposed and built the first electron-positron collider in 1960 in the Frascati National Laboratories in Italy. In this note we reconstruct a crucial period of Bruno Touschek’s life so far scarcely explored, which runs from Summer 1945 to the end of 1946. We shall describe his university studies in Gottingen,¨ placing them in the context of the reconstruction of German science after 1945. The influence of Werner Heisenberg and other prominent German physicists will be highlighted. In parallel, we shall show how the decisions of the Allied powers, towards restructuring science and technology in the UK after the war effort, determined Touschek’s move to the University of Glasgow in 1947. Make it a story of distances and starlight Robert Penn Warren, 1905-1989, c 1985 Robert Penn Warren arXiv:1910.09075v1 [physics.hist-ph] 20 Oct 2019 e-mail: [email protected], [email protected]. Authors’ ordering in this and related works alternates to reflect that this work is part of a joint collaboration project with no principal author. †) Also at Center for Theoretical Physics, Massachusetts Institute of Technology, USA. Contents 1 Introduction2 2 Hamburg 1945: from death rays to post-war science4 3 German science and the mission of the T-force6 3.1 Operation Epsilon .
    [Show full text]
  • Quest 8.2 10/10 For
    I NTERNATIONAL To Venture Beyond the Atmosphere The Foundation of the Max Planck Institute for Extraterrestrial Physics And the Roots of West Geman Space Research BY ULF von RAUCHHAUPT German: Max-Planck-Gesellschaft zur verwaltung) in Munich serves them Förderung der Wissenschaft - or MPG administratively. in short). Therefore, a rough sketch of The MPG constantly tries to adapt The Max Planck Institute for its most important features during the itself to changes in the world of science. Extraterrestrial Physics (MPE1) in period covered here may be appropri- One way of adaptation is to open up Garching, a small town 35 kilometers ate.2 new institutes when and where promis- north of Munich, ranks among the most Founded in 1911 as the Kaiser ing new fields of basic research are important space research facilities in Wilhelm Society (Kaiser-Wilhelm- opening up. As outlined below, this was Germany. It contributed to most of the Gesellschaft or KWG) and re-founded certainly the case for space research in scientific space missions in which the after the Second World War as the West Germany at the beginning of the country participated: from early sound- MPG, this organization devotes itself to 1960s. The autonomy of the institute ing rocket programs; the HEOS-1 satel- basic research which cannot, or not yet, directors -- dubbed the “Harnack lite in 1968 and the first German easily be pursued within the framework Principle”3 -- has a considerable impact national satellite AZUR in 1969; to of universities. To insure independence, on whether or how new Max Planck present missions such as XMM Newton the MPG is legally a private institution Institutes are founded.
    [Show full text]
  • Heisenberg in the Atomic Age: Science and the Public Sphere Cathryn Carson Frontmatter More Information
    Excerpt Index Cambridge University Press 978-1-107-43695-4 - Heisenberg in the Atomic Age: Science and the Public Sphere Cathryn Carson Frontmatter More information Heisenberg in the Atomic Age The end of the Second World War opened a new era for science in public life. Heisenberg in the Atomic Age explores the transformations of science’s public presence in the postwar Federal Republic of Germany. It shows how Werner Heisenberg’s philosophical commentaries, circulated in the mass media, secured his role as science’s public philosopher, and it reflects on his policy engagements and public political stands, which helped redefine the relationship between science and the state. With deep archival grounding, the book tracks Heisenberg’s interactions with intellectuals from Heidegger to Habermas and political leaders from Adenauer to Brandt. It also traces his evolving statements about his wartime research on nuclear fission for the National Socialist regime. Working between the history of science and German history, the book’s central theme is the place of scientific rationality in public life – after the atomic bomb, inthewakeoftheThirdReich. Cathryn Carson is Associate Professor of History and Director of the Office for History of Science and Technology at the University of California, Berkeley. She is coeditor, with David A. Hollinger, of Reappraising Oppenheimer: Centennial Studies and Reflections and chair of the editorial board of Historical Studies in the Natural Sciences. © in this web service Cambridge University Press www.cambridge.org Excerpt Index Cambridge University Press 978-1-107-43695-4 - Heisenberg in the Atomic Age: Science and the Public Sphere Cathryn Carson Frontmatter More information © in this web service Cambridge University Press www.cambridge.org Excerpt Index Cambridge University Press 978-1-107-43695-4 - Heisenberg in the Atomic Age: Science and the Public Sphere Cathryn Carson Frontmatter More information publications of the german historical institute Washington, D.C.
    [Show full text]
  • James, Steinhauser, Hoffmann, Friedrich One Hundred Years at The
    James, Steinhauser, Hoffmann, Friedrich One Hundred Years at the Intersection of Chemistry and Physics Published under the auspices of the Board of Directors of the Fritz Haber Institute of the Max Planck Society: Hans-Joachim Freund Gerard Meijer Matthias Scheffler Robert Schlögl Martin Wolf Jeremiah James · Thomas Steinhauser · Dieter Hoffmann · Bretislav Friedrich One Hundred Years at the Intersection of Chemistry and Physics The Fritz Haber Institute of the Max Planck Society 1911–2011 De Gruyter An electronic version of this book is freely available, thanks to the support of libra- ries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access. More information about the initiative can be found at www.knowledgeunlatched.org Aut ho rs: Dr. Jeremiah James Prof. Dr. Dieter Hoffmann Fritz Haber Institute of the Max Planck Institute for the Max Planck Society History of Science Faradayweg 4–6 Boltzmannstr. 22 14195 Berlin 14195 Berlin [email protected] [email protected] Dr. Thomas Steinhauser Prof. Dr. Bretislav Friedrich Fritz Haber Institute of the Fritz Haber Institute of the Max Planck Society Max Planck Society Faradayweg 4–6 Faradayweg 4–6 14195 Berlin 14195 Berlin [email protected] [email protected] Cover images: Front cover: Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry, 1913. From left to right, “factory” building, main building, director’s villa, known today as Haber Villa. Back cover: Campus of the Fritz Haber Institute of the Max Planck Society, 2011. The Institute’s his- toric buildings, contiguous with the “Röntgenbau” on their right, house the Departments of Physical Chemistry and Molecular Physics.
    [Show full text]
  • Early British Synchrotrons, an Informal History
    Technical Report RAL-TR-97-01 1 Early British Synchrotrons, An Informal History J D Lawson February 1997 COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS 0 Council for the Central laboratory of the Research Councils 1997 Enquiries about copyright, reproduction and requests for additional copies of this report should be addressed to: The Central Laboratory of the Research Councils Library and Information Services Rutherford Appleton Laboratory Ch i lton Didcot Oxfordshire OX1 1 OQX Tel: 01 235 445384 Fox: 01 235 446403 E-mail libraryQrl.ac.uk ISSN 1358-6254 Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of information contained in any of their reports or in any communication about their tests or investigations. Technical Report RAL-TR-97-011 EARLY BRITISH SYNCHROTRONS, AN INFORMAL HISTORY Presented as the third PICKAVANCE MEMORIAL LECTURE, at Rutherford Appleton Laboratory, 15 October 1996 by J D Lawson Rutherford Appleton Laboratory Chilton OXON OXllOQX TABLE OF CONTENTS Reface 1 Introduction 1 2 Early Plans at Malvern: The Worlds First Synchrotron 2 3 Design and Construction of the 30 MeV Machines 6 4 Design Features of the 30 MeV Machines 7 5 A Failed Experiment, Links With Fusion, and an Impractical Suggestion 12 6 Experiments in 'Machine Physics' 14 7 Beam Extraction 17 8 The Glasgow and Oxford Synchrotrons 18 9 Experimental Programmes on the Electron Synchrotrons 22 10 The Design and Construction of the Birmingham Proton Synchrotron 24 11 Work at Hamell for CERN, 1951-3 35 References and notes 42 Preface The material in this report is an extension of that presented by the author at the Birmingham Synchrotron 40th Anniversary Reunion, held on 16 September 1993.
    [Show full text]
  • Why Hitler Did Not Have Atomic Bombs
    Article Why Hitler Did Not Have Atomic Bombs Manfred Popp Karlsruhe Institute of Technology, Weberstr. 5, D-76133 Karlsruhe, Germany; [email protected] Abstract: In the 75 years since the end of World War II there is still no agreement on the answer to the question of why the presumed race between the USA and Nazi-Germany to build the atomic bomb did not take place. New insights and answers are derived from a detailed analysis of the most important document on the subject, the official report of a German army ordnance dated February 1942. This authoritative document has so far not been adequately analyzed. It has been overlooked, particularly that the goal of the Uranium Project was the demonstration of a self-sustaining chain reaction as a precondition for any future work on power reactors and an atomic bomb. This paper explores why Werner Heisenberg and his colleagues did not meet this goal and what prevented a bomb development program. Further evidence is derived from the research reports of the Uranium Project and from the Farm Hall transcripts. Additional conclusions can be drawn from the omission of experiments, which could have been possible and would have been mandatory if the atomic bomb would have been the aim of the program. Special consideration is given to the role of Heisenberg in the Uranium Project. Keywords: German uranium project; atomic bomb concepts; reactor experiments; US-German race for the atomic bomb; Werner Heisenberg 1. Introduction Albert Einstein’s fear that the national socialist regime in Germany would develop atomic bombs was the initial impetus for the Manhattan Project in the USA [1].
    [Show full text]
  • Wolfgang Gentner
    Wolfgang Gentner Dieter Hoffmann Ulrich Schmidt-Rohr (Herausgeber) Wolfgang Gentner Festschrift zum 100. Geburtstag 123 Professor Dr. Dieter Hoffmann Max-Planck-Institut für Wissenschaftsgeschichte Boltzmannstr. 22 14195 Berlin Professor Dr. Ulrich Schmidt-Rohr (1926−2006) Max-Planck-Institut für Kernphysik Saupfercheckweg 69029 Heidelberg ISBN-10 3-540-33699-0 Springer Berlin Heidelberg New York ISBN-13 978-3-540-33699-0 Springer Berlin Heidelberg New York Bibliografische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet ¨uber http://dnb.d-nb.de abrufbar. Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funk- sendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Ver- vielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes. Springer ist ein Unternehmen von Springer Science+Business Media springer.de © Springer-Verlag Berlin Heidelberg 2006 Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Herstellung und Satz: LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Einbandgestaltung: Erich Kirchner, Heidelberg SPIN 11543626 56/3100YL - 5 4 3 2 1 0 Gedruckt auf säurefreiem Papier Vorwort Am 23.
    [Show full text]