Farshad Hassanzadeh Niri

Total Page:16

File Type:pdf, Size:1020Kb

Farshad Hassanzadeh Niri Identification of CECR2-containing chromatin-remodeling complexes and their Chromatin-binding sites in mice by Farshad Hassanzadeh Niri A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Molecular Biology and Genetics Department of Biological Sciences University of Alberta © Farshad Hassanzadeh Niri, 2017 Abstract Eukaryotic nuclear DNA is packaged into chromatin, a complex nucleoprotein structure. This has functional consequences by controlling the accessibility of DNA to binding factors responsible for many important cellular processes such as transcription, DNA replication and DNA repair. ATP-dependent chromatin remodeling complexes such as the ISWI family can regulate these cellular processes by altering the chromatin structure. CECR2 is a chromatin remodeling factor that forms a complex with ISWI proteins SNF2H and SNF2L. Loss-of- function mutations in Cecr2 result in the perinatal lethal neural tube defect, exencephaly. Nonpenetrant animals that survive to adulthood exhibit subfertility. CECR2 loss affects transcription of multiple genes and is also involved in γ-H2AX formation and DSB repair. The mutant phenotypes indicate that CECR2 plays an important role in neural tube development and reproduction, but the mechanism of its function is not known. I therefore have investigated the components of the CECR2 complex and its chromatin binding sites in ES cells and testis. I hypothesized that the CECR2 complexes contain tissue-specific components that may correspond to tissue-specific functions in ES cells and testis. I also hypothesized that the CECR2 containing complexes occupy different chromatin binding sites. This work first required the development of a highly specific CECR2-specific antibody. I confirmed that CECR2 forms a complex with SNF2H and SNF2L both in mouse ES cells and in testes. I showed that the CECR2-containing complex in mouse ES cells and testes has a size of approximately 2 MDa, suggesting the presence of additional components in the complex. Mass spectrometric analysis of CECR2-containing complexes revealed novel binding partners of CECR2 in ES cells and adult testis. I identified CCAR2 as a new member of the CECR2-containing complex in ES cells and possibly testis. CCAR2 has been shown to be ii involved in DNA damage response, which is also a known function of CECR2. Strikingly, there is a difference in the composition of complexes isolated from ES cells and adult testis. LUZP1 (leucine zipper protein 1) was confirmed to be a binding partner of CECR2 only in mouse ES cells and not in testes. Luzp1 mutant mice display exencephaly in 42% of embryos, indicating its role in neural tube closure. LUZP1 appears to play a role in stabilizing the CECR2 complex. I showed that the CECR2 complexes have different components, which opens the door toward understanding the multiple functions of CECR2. Disruption of Cecr2 results in dysregulation of expression of many genes in mouse embryos, however the direct transcriptional targets of the CECR2 complexes are unknown. Therefore, to find the direct binding sites of the CECR2 complex, chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis was performed in ES cells and adult testis. Looking at the overlapping binding sites of CECR2 and SNF2H allowed for a more powerful analysis and investigating the additional overlap with the binding sites of LUZP1 in ES cells allowed me to look for the ES cell-specific binding sites. Little overlap of CECR2 binding sites between ES cells and testes was observed, suggesting tissue-specific transcriptional regulation. Analysis of the ChIP-seq data revealed that the CECR2 complex occupies the promoter and cis-regulatory regions of many genes. The identified genes in ES cells are involved in different aspects of embryonic development including brain, heart and kidney development. The Cecr2 mutants exhibit abnormalities in these three organs. Gene ontology (GO) analyses of the genes associated with the binding sites of the CECR2 complex in ES cells showed that this complex modulates important molecular pathways including Shh and Wnt signaling. The genes identified in testes are involved in different aspects of reproduction and development. I identified many candidate iii genes that can be used to investigate the CECR2 function in neurulation and fertility. Hsd17b2, Lpar1, Nf, Lrp6 and Phactr4 are possibly directly regulated by the CECR2 complex, all of which cause exencephaly when mutated. Elmo1, Fgfr4, Ggt1, Insr, Itgb3 and Schip1 from the ES cell dataset and Cdc14b, Nfia, Pcsk1 and Styx from the testis dataset are candidate genes involved in reproduction. My findings revealed that there are ES and testis-specific CECR2 complexes in mice. I showed that these complexes have different compositions and chromatin binding sites, which will facilitate understanding the multiple functions of CECR2 during development and reproduction. iv Preface The research project involving mice, of which this thesis is a part, received research ethics approval from the Animal Care and Use Committee of the University of Alberta, University of Alberta AUP 00000094. Some of the research for this thesis has been completed in collaboration. Section 2.21.1: Aligning ChIP-seq reads and detecting peaks were performed in collaboration with Dr. Paul Stothard. Figure 3-12: Kacie Norton (graduate student) performed the IF staining and contributed the data to my thesis. Figures 4-1 & 4-2: Alaina Tripstra (graduate student) performed IF and contributed the results as the figures to my thesis. Section 3.10.1.3: Nhu Trieu (undergraduate student under my supervision) performed this part of the experiments and contributed the data to my thesis. Section 3.10.4.1 Kenji Rowel Lim (undergraduate student under my supervision) performed part of the experiments in this section and contributed the data to my thesis. Figure 3-39: Justin Elliott (undergraduate student under my supervision) performed part of the apoptosis experiment and contributed the figure to my thesis. v Acknowledgements First and foremost, I am deeply grateful to my supervisor, Dr. Heather McDermid, for her great supervision, patience and intellectual and financial support, which made the completion of this research possible. She provided a creative and open environment for us to work in. She is not only a remarkable scientist but also a great role model to us. I would also like to thank the rest of my thesis advisory committee, Dr. Kirst King- Jones and Dr. Roseline Godbout, for their guidance and help. I am also grateful to the present and former members of the McDermid lab. They are all my friends and I enjoyed working with them. Thank to Renee Leduc, Kacie Norton, Alaina Trepstra and Parmveer Singh for being such great colleagues. Thanks to all undergraduate students who worked with me in the lab during my PhD program. I also thank my friends Dr. Mohammad Shahrooie and Dr. Dhamo Neel for their helpful advice. I would also like to thank Ehsan Misaghi for helping me in computational analyses. Finally, I would like to dedicate this thesis to my family. They always support me with their endless love. vi Table of Contents 1. INTRODUCTION 1 1.1. CHROMATIN STRUCTURE 1 1.2. CHROMATIN STRUCTURE AND GENE REGULATION 2 1.3. CHROMATIN REMODELING 2 1.4. ATP-DEPENDENT CHROMATIN REMODELING 4 1.5. THE ISWI FAMILY OF NUCLEOSOME REMODELING COMPLEXES 5 1.5.1. THE MAMMALIAN ISWI COMPLEXES 6 1.5.2. FUNCTIONS OF ISWI COMPLEXES 9 1.6. ISWI TARGETING MECHANISM 15 1.6.1. PROTEIN DOMAINS AND TARGETING ISWI COMPLEXES TO CHROMATIN 15 1.6.2. TARGETING BY SEQUENCE SPECIFIC BINDING PROTEINS 22 1.6.3. TARGETING TO THE BINDING SITES BY RNA 22 1.7. DEVELOPMENTAL IMPORTANCE OF BAZ-LIKE PROTEINS 23 1.8. BIOLOGICAL AND FUNCTIONAL ROLES OF CECR2 25 1.8.1. CECR2 MUTATIONS 25 1.8.2. CECR2 MUTANT PHENOTYPES 27 1.8.3. CECR2 EXPRESSION PATTERN 28 1.9. CECR2-CONTAINING COMPLEXES 29 1.10. GENOME-WIDE ANALYSIS OF THE ATP-DEPENDENT CHROMATIN REMODELLERS 30 1.11. RATIONALE: 33 2. MATERIALS AND METHODS 35 2.1. MAINTAINING THE MOUSE COLONY 35 2.1.1. BREEDING 35 2.1.2. EUTHANASIA 35 2.2. GENOTYPING CECR2 MUTATIONS 36 2.2.1. GENOMIC DNA EXTRACTION 36 2.2.2. CECR2TM1.1HEMC GENOTYPING 36 2.2.3. CECR2GT45BIC GENOTYPING 37 2.2.4. AGAROSE GEL ELCTROPHORESIS 37 2.3. AFFINITY PURIFICATION OF CHICKEN POLYCLONAL ANTIBODIES TO MOUSE CECR2 38 2.4. PRODUCTION OF ANTIBODIES DIRECTED AGAINST MOUSE CECR2 IN RABBIT 40 2.4.1. TOTAL RNA EXTRACTION 40 2.4.2. CDNA SYNTHESIS 40 2.4.3. AMPLIFICATION OF HISTIDINE-TAGGED CECR2 FRAGMENTS 40 2.4.4. A-TAILING AND LIGATION 41 2.4.5. PREPARATION OF COMPETENT E. COLI (DH5 ALPHA) 41 2.4.6. CLONING THE LIGATED-CECR2-FRAGMENTS 41 2.4.7. SUBCLONING INTO THE EXPRESSION VECTOR 42 2.4.8. EXPRESSION AND PURIFICATION OF RECOMBINANT POLYPEPTIDE (B5P44) 42 2.4.9. IMMUNIZATION AND PRODUCTION OF POLYCLONAL ANTIBODIES 42 2.5. MOUSE EMBRYONIC STEM (ES) CELL CULTURE 45 2.6. PREPARATION OF NUCLEAR EXTRACTS FROM ES CELLS 46 2.7. PREPARATION OF NUCLEAR EXTRACTS FROM TISSUES 46 2.8. PREPARATION OF WHOLE CELL LYSATES FROM ES CELLS 47 vii 2.9. PREPARATION OF WHOLE CELL LYSATES FROM TISSUES 48 2.10. SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 48 2.11. COOMASSIE BLUE STAINING OF POLYACRYLAMIDE GELS 49 2.12. WESTERN BLOT ANALYSIS 49 2.13. IMMUNOPRECIPITATION 50 2.14. GEL FILTRATION 51 2.15. TCA PRECIPITATION 53 2.16. ETHIDIUM BROMIDE AND RNASE A TREATMENT OF PROTEIN EXTRACTS 53 2.17. MASS SPECTROMETRY 53 2.17.1. CROSSLINKING ANTIBODY TO DYNABEADS 53 2.17.2. LARGE SCALE IP USING ES CELLS 54 2.17.3. LARGE SCALE IP USING TESTIS 55 2.17.4. IN-GEL TRYPTIC DIGESTION 55 2.17.5. PURIFICATION OF PEPTIDES AFTER IN-GEL DIGESTION AND LC-MS/MS 56 2.17.6.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplement 1 Microarray Studies
    EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological
    [Show full text]
  • Understanding Chronic Kidney Disease: Genetic and Epigenetic Approaches
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Understanding Chronic Kidney Disease: Genetic And Epigenetic Approaches Yi-An Ko Ko University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Systems Biology Commons Recommended Citation Ko, Yi-An Ko, "Understanding Chronic Kidney Disease: Genetic And Epigenetic Approaches" (2017). Publicly Accessible Penn Dissertations. 2404. https://repository.upenn.edu/edissertations/2404 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2404 For more information, please contact [email protected]. Understanding Chronic Kidney Disease: Genetic And Epigenetic Approaches Abstract The work described in this dissertation aimed to better understand the genetic and epigenetic factors influencing chronic kidney disease (CKD) development. Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) significantly associated with chronic kidney disease. However, these studies have not effectively identified target genes for the CKD variants. Most of the identified variants are localized to non-coding genomic regions, and how they associate with CKD development is not well-understood. As GWAS studies only explain a small fraction of heritability, we hypothesized that epigenetic changes could explain part of this missing heritability. To identify potential gene targets of the genetic variants, we performed expression quantitative loci (eQTL) analysis, using genotyping arrays and RNA sequencing from human kidney samples. To identify the target genes of CKD-associated SNPs, we integrated the GWAS-identified SNPs with the eQTL results using a Bayesian colocalization method, coloc. This resulted in a short list of target genes, including PGAP3 and CASP9, two genes that have been shown to present with kidney phenotypes in knockout mice.
    [Show full text]
  • CSE642 Final Version
    Eindhoven University of Technology MASTER Dimensionality reduction of gene expression data Arts, S. Award date: 2018 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology MASTER THESIS Dimensionality Reduction of Gene Expression Data Author: S. (Sako) Arts Daily Supervisor: dr. V. (Vlado) Menkovski Graduation Committee: dr. V. (Vlado) Menkovski dr. D.C. (Decebal) Mocanu dr. N. (Nikolay) Yakovets May 16, 2018 v1.0 Abstract The focus of this thesis is dimensionality reduction of gene expression data. I propose and test a framework that deploys linear prediction algorithms resulting in a reduced set of selected genes relevant to a specified case. Abstract In cancer research there is a large need to automate parts of the process of diagnosis, this is mainly to reduce cost, make it faster and more accurate.
    [Show full text]
  • Integrated Genomic Analysis Identifies ANKRD36 Gene As a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2021 doi:10.20944/preprints202108.0498.v1 Article Integrated Genomic Analysis Identifies ANKRD36 Gene as a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia Zafar Iqbal 1,2,3, Muhammad Absar2, Tanveer Akhtar2, Aamer Aleem4, Abid Jameel5, Sulman Basit 6, Anhar Ullah7, Sibtain Afzal8, Khushnooda Ramzan9, Mahmood Rasool10, Sajjad Karim10, Zeenat Mirza10, Mudassar Iqbal11, Mar- yam AlMajed1, Buthinah AlShehab1, Sarah AlMukhaylid1, Nouf AlMutairi1, Nawaf Al-anazi1, 12, Muhammad Farooq Sabar13, Muhammad Arshad14, Muhammad Asif15, Masood Shammas16 and Amer Mehmood15 1: Clinical Laboratory Sciences, College of Applied Medical Sciences (CoAMS-A), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City/Kind Abdullah International Medical Research Centre (KAIMRC)/Saudi Society for Blood and Marrow Transplantation (SSBMT), King Abdulaziz Medical City, National Guard Health Affairs, Al-Ahsa, Saudi Arabia. 2:Hematology, Oncology and Pharmaco-genetic Engineering Sciences (HOPES) Group, Health Sciences Labora- tories (HaSiL), Department of Zoology, University of the Punjab (ZPU), Lahore 54590, Pakistan. 3: Next-Generation Medical Biotechnology & Genomic Medicine Division, Department of Biotechnology, Qarshi University, Lahore, Pakistan. 4Division of Hematology/Oncology, Department of Medicine, KKUH and College of Medicine, King Saud University, Riyadh, Saudi Arabia. 5 Khyber Teaching Hospital and Hayatabad Medical Complex, Peshawar, Pakistan. 6Taibah University Madinah-Center for Genetics and, Inherited Diseases Center for Genetics and Inherited Diseases,, Taibah University Madinah, 30001, Saudi Arabia, Almadinah Almunawarah 30001, Saudi Arabia. 7 National Heart and Lung Institute, Imperial College London, UK. 8Biomedical Research Laboratory, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. 9Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • Cell Type-Specific Analysis of Human Interactome and Transcriptome Shahin Mohammadi Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations January 2016 Cell Type-specific Analysis of Human Interactome and Transcriptome Shahin Mohammadi Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Recommended Citation Mohammadi, Shahin, "Cell Type-specific Analysis of Human Interactome and Transcriptome" (2016). Open Access Dissertations. 1371. https://docs.lib.purdue.edu/open_access_dissertations/1371 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated 12/26/2015 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Shahin Mohammadi Entitled CELL TYPE-SPECIFIC ANALYSIS OF HUMAN INTERACTOME AND TRANSCRIPTOME For the degree of Doctor of Philosophy Is approved by the final examining committee: Ananth Grama Wojciech Szpankowski Chair David Gleich Jennifer Neville Markus Lill To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Ananth Grama William Gorman, Assistant to the Department Head 11/1/2016 Approved by: Head of the Departmental Graduate Program Date CELL TYPE-SPECIFIC ANALYSIS OF HUMAN INTERACTOME AND TRANSCRIPTOME A Dissertation Submitted to the Faculty of Purdue University by Shahin Mohammadi In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2016 Purdue University West Lafayette, Indiana ii I dedicate this thesis to my mom, whose role in my life I can not even begin to describe.
    [Show full text]
  • Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
    Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation.
    [Show full text]
  • A Group of Chimeric Antigen Receptors (Cars)
    (19) *EP003632461A1* (11) EP 3 632 461 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2020 Bulletin 2020/15 A61K 39/00 (2006.01) (21) Application number: 18198850.2 (22) Date of filing: 05.10.2018 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SALZER, Benjamin GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 3744 Stockern (AT) PL PT RO RS SE SI SK SM TR •LEHNER, Manfred Designated Extension States: 1090 Vienna (AT) BA ME • TRAXLMAYR, Michael Designated Validation States: 1180 Vienna (AT) KH MA MD TN (74) Representative: Sonn & Partner Patentanwälte (71) Applicants: Riemergasse 14 • St. Anna Kinderkrebsforschung 1010 Wien (AT) 1090 Vienna (AT) • Universität für Bodenkultur Wien 1180 Wien (AT) (54) A GROUP OF CHIMERIC ANTIGEN RECEPTORS (CARS) (57) Disclosed is a group of chimeric antigen recep- regulating molecule and optionally reduced by another tors (CARs) consisting of two, three or four CAR mole- regulating molecule, or occurs in the absence of a regu- cules, lating molecule and is reduced by a regulating molecule, wherein the members of the group of CARs can be dif- and ferent or identical in their amino acid sequences to one wherein the ectodomain of each CAR molecule of the another, and group in its prevalent conformation is free of cysteine wherein each of the CAR molecules of the group com- amino acid moieties which are able to form intermolecular prise at least a transmembrane domain and an ectodo- disulphide bonds with other CAR molecules of the
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]