Identification and Characterisation of Murine Metastable Epialleles Conferred by Endogenous Retroviruses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clinical Validation of the Tempus Xt Next-Generation Targeted Oncology Sequencing Assay
www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 24), pp: 2384-2396 Research Paper Clinical validation of the tempus xT next-generation targeted oncology sequencing assay Nike Beaubier1, Robert Tell1, Denise Lau1, Jerod R. Parsons1, Stephen Bush1, Jason Perera1, Shelly Sorrells1, Timothy Baker1, Alan Chang1, Jackson Michuda1, Catherine Iguartua1, Shelley MacNeil1, Kaanan Shah1, Philip Ellis1, Kimberly Yeatts1, Brett Mahon1, Timothy Taxter1, Martin Bontrager1, Aly Khan1, Robert Huether1, Eric Lefkofsky1 and Kevin P. White1 1Tempus Labs Inc., Chicago, IL 60654, USA Correspondence to: Nike Beaubier, email: [email protected] Kevin P. White, email: [email protected] Keywords: tumor profiling, next-generation sequencing assay validation Received: August 03, 2018 Accepted: February 03, 2019 Published: March 22, 2019 Copyright: Beaubier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT We developed and clinically validated a hybrid capture next generation sequencing assay to detect somatic alterations and microsatellite instability in solid tumors and hematologic malignancies. This targeted oncology assay utilizes tumor- normal matched samples for highly accurate somatic alteration calling and whole transcriptome RNA sequencing for unbiased identification of gene fusion events. The assay was validated with a combination of clinical specimens and cell lines, and recorded a sensitivity of 99.1% for single nucleotide variants, 98.1% for indels, 99.9% for gene rearrangements, 98.4% for copy number variations, and 99.9% for microsatellite instability detection. This assay presents a wide array of data for clinical management and clinical trial enrollment while conserving limited tissue. -
University of Groningen Development of Bioinformatic Tools And
University of Groningen Development of bioinformatic tools and application of novel statistical methods in genome- wide analysis van der Most, Peter Johannes IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van der Most, P. J. (2017). Development of bioinformatic tools and application of novel statistical methods in genome-wide analysis. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-10-2021 Chapter 8 Genome-wide survival meta-analysis of age at first cannabis use Camelia C. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation. -
WO 2015/048577 A2 April 2015 (02.04.2015) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/048577 A2 April 2015 (02.04.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 48/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/057905 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 26 September 2014 (26.09.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/883,925 27 September 2013 (27.09.2013) US (84) Designated States (unless otherwise indicated, for every 61/898,043 31 October 2013 (3 1. 10.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: EDITAS MEDICINE, INC. -
Of Small Intestine Harboring Driver Gene Mutations: a Case Report and a Literature Review
1161 Case Report A rare multiple primary sarcomatoid carcinoma (SCA) of small intestine harboring driver gene mutations: a case report and a literature review Zhu Zhu1#, Xinyi Liu2#, Wenliang Li1, Zhengqi Wen1, Xiang Ji1, Ruize Zhou1, Xiaoyu Tuo3, Yaru Chen2, Xian Gong2, Guifeng Liu2, Yanqing Zhou2, Shifu Chen2, Lele Song2#^, Jian Huang1 1Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China; 2HaploX Biotechnology, Shenzhen, China; 3Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China #These authors contributed equally to this work. Correspondence to: Jian Huang. Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming 560032, Yunnan Province, China. Email: [email protected]; Lele Song. HaploX Biotechnology, 8th floor, Auto Electric Power Building, Songpingshan Road, Nanshan District, Shenzhen 518057, Guangdong Province, China. Email: [email protected]. Abstract: Primary sarcomatoid carcinoma (SCA) is a type of rare tumor consisting of both malignant epithelial and mesenchymal components. Only 32 cases of SCA of the small bowel have been reported in the literature to date. Due to its rarity and complexity, this cancer has not been genetically studied and its diagnosis and treatment remain difficult. Here we report a 54-year-old male underwent emergency surgical resection in the small intestine due to severe obstruction and was diagnosed with multiple SCA based on postoperative pathological examination. Over 100 polypoid tumors scattered along his whole jejunum and proximal ileum. Chemotherapy (IFO+Epirubicin) was performed after surgery while the patient died two months after the surgery due to severe malnutrition. Whole-exome sequencing was performed for the tumor tissue with normal tissue as the control. -
De Rol Van ECT2L in Normale En Maligne T-Cel Ontwikkeling Maaike
De rol van ECT2L in normale en maligne T-cel ontwikkeling Maaike VAN TRIMPONT Verhandeling ingediend tot het verkrijgen van de graad van Master in de Biomedische Wetenschappen Promotor: Prof. Dr. Pieter Van Vlierberghe Begeleider: Dr. Filip Matthijssens Vakgroep Pediatrie en genetica Academiejaar 2015-2016 De rol van ECT2L in normale en maligne T-cel ontwikkeling Maaike VAN TRIMPONT Verhandeling ingediend tot het verkrijgen van de graad van Master in de Biomedische Wetenschappen Promotor: Prof. Dr. Pieter Van Vlierberghe Begeleider: Dr. Filip Matthijssens Vakgroep Pediatrie en genetica Academiejaar 2015-2016 “De auteur en de promotor geven de toelating deze masterproef voor consultatie beschikbaar te stellen en delen ervan te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk de bron te vermelden bij het aanhalen van resultaten uit deze masterproef.” 9 mei 2016 Maaike Van Trimpont Pieter Van Vlierberghe VOORWOORD “I have not failed. I’ve successfully discovered 10000 things that won’t work” zei Thomas Ed- ison ooit. Wetenschap gaat inderdaad niet alleen om het uitvinden van dingen, maar ook om het ontdekken waarom sommige dingen niet werken. Hoewel het uitvoeren van deze masterproef niet altijd van een leien dakje ging, kan ik toch zeggen dat ik oprecht trots ben op het eindre- sultaat. Zes jaar geleden had ik nooit verwacht om hier te staan met alle kennis die ik nu heb. Mijn ouders hebben hierin een grote rol gespeeld en ik zou hen dan ook graag bedanken voor de kans die ze mij gegeven hebben om te studeren. -
Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports
University of Calgary PRISM: University of Calgary's Digital Repository Libraries & Cultural Resources Open Access Publications 2011-08-07 Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports Liu, Jing; Bernier, Francois; Lauzon, Julie; Lowry, R. Brian; Chernos, Judy Jing Liu, Francois Bernier, Julie Lauzon, R. Brian Lowry, and Judy Chernos, “Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports,” Genetics Research International, vol. 2011, Article ID 976398, 9 pages, 2011. doi:10.4061/2011/976398 http://hdl.handle.net/1880/108431 Journal Article Downloaded from PRISM: https://prism.ucalgary.ca SAGE-Hindawi Access to Research Genetics Research International Volume 2011, Article ID 976398, 9 pages doi:10.4061/2011/976398 Case Report Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports Jing Liu, Francois Bernier, Julie Lauzon, R. Brian Lowry, and Judy Chernos Department of Medical Genetics, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8 Correspondence should be addressed to Judy Chernos, [email protected] Received 16 February 2011; Revised 20 April 2011; Accepted 20 May 2011 Academic Editor: Reha Toydemir Copyright © 2011 Jing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Microarray-based comparative genomic hybridization (array CGH) is a newly emerged molecular cytogenetic technique for rapid evaluation of the entire genome with sub-megabase resolution. It allows for the comprehensive investigation of thousands and millions of genomic loci at once and therefore enables the efficient detection of DNA copy number variations (a.k.a, cryptic genomic imbalances). -
Supplementary Table 1 Double Treatment Vs Single Treatment
Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19 -
High TMPRSS11D Protein Expression Predicts Poor Overall Survival in Non-Small Cell Lung Cancer
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 8), pp: 12812-12819 Research Paper High TMPRSS11D protein expression predicts poor overall survival in non-small cell lung cancer Xiang Cao1, Zhiyuan Tang2, Fang Huang3, Qin Jin3, Xiaoyu Zhou2, Jiahai Shi1 1Department of Cardiothoracic Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China 2Department of Respiratory Medicine, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China 3Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China Correspondence to: Xiaoyu Zhou, email: [email protected] Jiahai Shi, email: [email protected] Keywords: TMPRSS11D, non-small cell lung cancer, immunohistochemistry, prognosis Received: August 19, 2016 Accepted: October 28, 2016 Published: January 09, 2017 ABSTRACT TMPRSS11D (HAT) belongs to the large type II transmembrane serine protease (TTSP) family, participating in various biological and physiological processes. TMPRSS11D expression has been reported during squamous cell carcinogenesis, however, its expression during non-small cell lung cancer (NSCLC) development has not been studied. In this study, we determined the mRNA and protein expression of TMPRSS11D in NSCLC tumorous and matched adjacent normal tissues by quantitative reverse transcription PCR (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC) respectively. TMPRSS11D protein expression in tumorous tissues were correlated with NSCLC patients’ clinical characteristics and overall survival. Both TMPRSS11D mRNA and protein expression levels were significantly higher in NSCLC tumorous tissues than in adjacent normal tissues. High TMPRSS11D protein expression was associated with high TNM stages, and high TMPRSS11D protein expression is an independent prognostic marker in NSCLC. Based on our results, we conclude that TMPRSS11D could play a role in NSCLC development and progression. -
Dissecting Aberrant Proteolytic Ubiquitin Networks in Cancer
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Medizin III. Medizinische Klinik und Poliklinik Klinikum rechts der Isar Dissecting aberrant proteolytic ubiquitin networks in cancer Carmen Gloria Richter (M.Sc.) Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Dr. Andreas Pichlmair Prüfer der Dissertation: 1. Prof. Dr. Florian Bassermann 2. Prof. Dr. Bernhard Küster 3. Prof. Dr. Sebastian Theurich Die Dissertation wurde am 01.08.2019 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 07.04.2020 angenommen. Content 1 Summary ................................................................................................................... 1 2 Introduction .............................................................................................................. 3 2.1 Multiple myeloma ............................................................................................................3 2.1.1 Pathophysiology .........................................................................................................3 2.1.2 Clinical manifestation and diagnosis ...........................................................................5 2.1.3 Treatment ...................................................................................................................6 2.1.4 The role of MYC in multiple myeloma .........................................................................7 -
KRAB Zinc Finger Protein Diversification Drives Mammalian Interindividual Methylation Variability
KRAB zinc finger protein diversification drives mammalian interindividual methylation variability Tessa M. Bertozzia, Jessica L. Elmera, Todd S. Macfarlanb, and Anne C. Ferguson-Smitha,1 aDepartment of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom; and bThe Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 Edited by Peter A. Jones, Van Andel Institute, Grand Rapids, MI, and approved October 28, 2020 (received for review August 19, 2020) Most transposable elements (TEs) in the mouse genome are DNA methylation of the Avy IAP is established early in devel- heavily modified by DNA methylation and repressive histone opment across genetically identical mice and is correlated with a modifications. However, a subset of TEs exhibit variable methyl- spectrum of coat color phenotypes, which in turn display trans- ation levels in genetically identical individuals, and this is associated generational inheritance and environmental sensitivity (11–13). with epigenetically conferred phenotypic differences, environ- Both the distribution and heritability of Avy phenotypes are mental adaptability, and transgenerational epigenetic inheritance. influenced by genetic background (14–16). Therefore, the iden- The evolutionary origins and molecular mechanisms underlying tification and characterization of the responsible modifier genes interindividual epigenetic variability remain unknown. Using a can provide insight into the mechanisms governing the early repertoire of murine variably methylated intracisternal A-particle establishment of stochastic methylation states at mammalian (VM-IAP) epialleles as a model, we demonstrate that variable DNA transposable elements. methylation states at TEs are highly susceptible to genetic back- We recently conducted a genome-wide screen for individual ground effects.