KRAB Zinc Finger Protein Diversification Drives Mammalian Interindividual Methylation Variability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulation of Cdc42 and Its Effectors in Epithelial Morphogenesis Franck Pichaud1,2,*, Rhian F
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs217869. doi:10.1242/jcs.217869 REVIEW SUBJECT COLLECTION: ADHESION Regulation of Cdc42 and its effectors in epithelial morphogenesis Franck Pichaud1,2,*, Rhian F. Walther1 and Francisca Nunes de Almeida1 ABSTRACT An overview of Cdc42 Cdc42 – a member of the small Rho GTPase family – regulates cell Cdc42 was discovered in yeast and belongs to a large family of small – polarity across organisms from yeast to humans. It is an essential (20 30 kDa) GTP-binding proteins (Adams et al., 1990; Johnson regulator of polarized morphogenesis in epithelial cells, through and Pringle, 1990). It is part of the Ras-homologous Rho subfamily coordination of apical membrane morphogenesis, lumen formation and of GTPases, of which there are 20 members in humans, including junction maturation. In parallel, work in yeast and Caenorhabditis elegans the RhoA and Rac GTPases, (Hall, 2012). Rho, Rac and Cdc42 has provided important clues as to how this molecular switch can homologues are found in all eukaryotes, except for plants, which do generate and regulate polarity through localized activation or inhibition, not have a clear homologue for Cdc42. Together, the function of and cytoskeleton regulation. Recent studies have revealed how Rho GTPases influences most, if not all, cellular processes. important and complex these regulations can be during epithelial In the early 1990s, seminal work from Alan Hall and his morphogenesis. This complexity is mirrored by the fact that Cdc42 can collaborators identified Rho, Rac and Cdc42 as main regulators of exert its function through many effector proteins. -
De Novo Frameshift Mutation in ASXL3 in a Patient with Global Developmental Delay, Microcephaly, and Craniofacial Anomalies
Children's Mercy Kansas City SHARE @ Children's Mercy Manuscripts, Articles, Book Chapters and Other Papers 9-17-2013 De novo frameshift mutation in ASXL3 in a patient with global developmental delay, microcephaly, and craniofacial anomalies. Darrell L. Dinwiddie Sarah E. Soden Children's Mercy Hospital Carol J. Saunders Children's Mercy Hospital Neil A. Miller Children's Mercy Hospital Emily G. Farrow Children's Mercy Hospital See next page for additional authors Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers Part of the Medical Genetics Commons Recommended Citation Dinwiddie, D. L., Soden, S. E., Saunders, C. J., Miller, N. A., Farrow, E. G., Smith, L. D., Kingsmore, S. F. De novo frameshift mutation in ASXL3 in a patient with global developmental delay, microcephaly, and craniofacial anomalies. BMC Med Genomics 6, 32-32 (2013). This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact [email protected]. Creator(s) Darrell L. Dinwiddie, Sarah E. Soden, Carol J. Saunders, Neil A. Miller, Emily G. Farrow, Laurie D. Smith, and Stephen F. Kingsmore This article is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/papers/1414 Dinwiddie et al. BMC Medical Genomics 2013, 6:32 http://www.biomedcentral.com/1755-8794/6/32 CASE REPORT Open Access De novo frameshift -
Clinical Validation of the Tempus Xt Next-Generation Targeted Oncology Sequencing Assay
www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 24), pp: 2384-2396 Research Paper Clinical validation of the tempus xT next-generation targeted oncology sequencing assay Nike Beaubier1, Robert Tell1, Denise Lau1, Jerod R. Parsons1, Stephen Bush1, Jason Perera1, Shelly Sorrells1, Timothy Baker1, Alan Chang1, Jackson Michuda1, Catherine Iguartua1, Shelley MacNeil1, Kaanan Shah1, Philip Ellis1, Kimberly Yeatts1, Brett Mahon1, Timothy Taxter1, Martin Bontrager1, Aly Khan1, Robert Huether1, Eric Lefkofsky1 and Kevin P. White1 1Tempus Labs Inc., Chicago, IL 60654, USA Correspondence to: Nike Beaubier, email: [email protected] Kevin P. White, email: [email protected] Keywords: tumor profiling, next-generation sequencing assay validation Received: August 03, 2018 Accepted: February 03, 2019 Published: March 22, 2019 Copyright: Beaubier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT We developed and clinically validated a hybrid capture next generation sequencing assay to detect somatic alterations and microsatellite instability in solid tumors and hematologic malignancies. This targeted oncology assay utilizes tumor- normal matched samples for highly accurate somatic alteration calling and whole transcriptome RNA sequencing for unbiased identification of gene fusion events. The assay was validated with a combination of clinical specimens and cell lines, and recorded a sensitivity of 99.1% for single nucleotide variants, 98.1% for indels, 99.9% for gene rearrangements, 98.4% for copy number variations, and 99.9% for microsatellite instability detection. This assay presents a wide array of data for clinical management and clinical trial enrollment while conserving limited tissue. -
High Throughput Strategies Aimed at Closing the GAP in Our Knowledge of Rho Gtpase Signaling
cells Review High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling Manel Dahmene 1, Laura Quirion 2 and Mélanie Laurin 1,3,* 1 Oncology Division, CHU de Québec–Université Laval Research Center, Québec, QC G1V 4G2, Canada; [email protected] 2 Montréal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; [email protected] 3 Université Laval Cancer Research Center, Québec, QC G1R 3S3, Canada * Correspondence: [email protected] Received: 21 May 2020; Accepted: 7 June 2020; Published: 9 June 2020 Abstract: Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. -
University of Groningen Development of Bioinformatic Tools And
University of Groningen Development of bioinformatic tools and application of novel statistical methods in genome- wide analysis van der Most, Peter Johannes IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van der Most, P. J. (2017). Development of bioinformatic tools and application of novel statistical methods in genome-wide analysis. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-10-2021 Chapter 8 Genome-wide survival meta-analysis of age at first cannabis use Camelia C. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders
Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Andrew H. Chiang All Rights Reserved Abstract Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Autism spectrum disorders (ASD) are a group of related neurodevelopmental diseases displaying significant genetic and phenotypic heterogeneity. Despite recent progress in ASD genetics, the nature of phenotypic heterogeneity across probands is not well understood. Notably, likely gene- disrupting (LGD) de novo mutations affecting the same gene often result in substantially different ASD phenotypes. We find that truncating mutations in a gene can result in a range of relatively mild decreases (15-30%) in gene expression due to nonsense-mediated decay (NMD), and show that more severe autism phenotypes are associated with greater decreases in expression. We also find that each gene with recurrent ASD mutations can be described by a parameter, phenotype dosage sensitivity (PDS), which characteriZes the relationship between changes in a gene’s dosage and changes in a given phenotype. Using simple linear models, we show that changes in gene dosage account for a substantial fraction of phenotypic variability in ASD. We further observe that LGD mutations affecting the same exon frequently lead to strikingly similar phenotypes in unrelated ASD probands. These patterns are observed for two independent proband cohorts and multiple important ASD-associated phenotypes. The observed phenotypic similarities are likely mediated by similar changes in gene dosage and similar perturbations to the relative expression of splicing isoforms. -
ASXL3 Is a Novel Pluripotency Factor in Human Respiratory Epithelial Cells and A
Author Manuscript Published OnlineFirst on September 21, 2017; DOI: 10.1158/0008-5472.CAN-17-0570 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ASXL3 is a Novel Pluripotency Factor in Human Respiratory Epithelial Cells and a Potential Therapeutic Target in Small Cell Lung Cancer Vivek Shukla1, Mahadev Rao1, Hongen Zhang2, Jeanette Beers3, Darawalee Wangsa2, Danny Wangsa2, Floryne O. Buishand2, Yonghong Wang2, Zhiya Yu5, Holly S. Stevenson2, Emily S. Reardon1, Kaitlin C. McLoughlin1, Andrew S. Kaufman1, Eden C. Payabyab1, Julie A. Hong1, Mary Zhang1, Sean Davis2, Daniel Edelman2, Guokai Chen3*, Markku M. Miettinen4, Nicholas P. Restifo5, Thomas Ried2, Paul A. Meltzer2, David S. Schrump1# 1Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch; 2Genetics Branch, 4Laboratory of Pathology, 5Surgery Branch, Center for Cancer Research, National Cancer Institute; 3NHLBI iPSC Core, National Institutes of Health, Bethesda, MD * Present address: University of Macau, China. Running Title: ASXL3, Lu-iPSC and SCLC Keywords: iPSC, ASXL3, lung cancer, small cell lung cancer, epigenetics Financial Support: This work was supported by NCI Intramural grants ZIA BC 011122 (to D.S. Schrump) and ZIA BC 011418 (to D.S. Schrump), and the Stephen J. Solarz Memorial Fund (to D.S. Schrump). #Corresponding Author David S. Schrump, MD, MBA, FACS Thoracic and GI Oncology Branch, CCR/NCI Building 10; 4-3942, 10 Center Drive, MSC 1201 Bethesda, MD 20892-1201 Tel: 301-496-2128 Fax: 301-451-6934 Email: [email protected] 1 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 21, 2017; DOI: 10.1158/0008-5472.CAN-17-0570 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
A Genome-Wide Association Study Identifies Multiple Regions
GENOMIC SELECTION A Genome-Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish Xin Geng,* Shikai Liu,* Jun Yao,* Lisui Bao,* Jiaren Zhang,* Chao Li,* Ruijia Wang,* Jin Sha,§ † ‡ Peng Zeng, Degui Zhi, ,** and Zhanjiang Liu*,1 *Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and § Aquatic Sciences, †Department of Mathematics and Statistics, Auburn University, Alabama 36849, Department of Biostatistics, University of Alabama at Birmingham, Alabama 35294, and ‡School of Biomedical Informatics and **School of Public Health, the University of Texas Health Science Center at Houston, Texas 77030 ABSTRACT Skull morphology is fundamental to evolution and the biological adaptation of species to their KEYWORDS environments. With aquaculture fish species, head size is also important for economic reasons because it head size has a direct impact on fillet yield. However, little is known about the underlying genetic basis of head size. GWAS Catfish is the primary aquaculture species in the United States. In this study, we performed a genome-wide QTL association study using the catfish 250K SNP array with backcross hybrid catfish to map the QTL for head fish size (head length, head width, and head depth). One significantly associated region on linkage group (LG) hybrid 7 was identified for head length. In addition, LGs 7, 9, and 16 contain suggestively associated regions for GenPred head length. For head width, significantly associated regions were found on LG9, and additional shared data suggestively associated regions were identified on LGs 5 and 7. No region was found associated with resources head depth. Head size genetic loci were mapped in catfish to genomic regions with candidate genes genomic involved in bone development. -
1 Gain-Of-Function Mutations of ARHGAP31, a Cdc42/Rac1
Gain-of-Function Mutations of ARHGAP31, a Cdc42/Rac1 GTPase Regulator, Cause Syndromic Cutis Aplasia and Limb Anomalies Laura Southgate,1,12 Rajiv D. Machado,1,12 Katie M. Snape,1,12 Martin Primeau,2 Dimitra Dafou,1 Deborah M. Ruddy,3 Peter A. Branney,4 Malcolm Fisher,4 Grace J. Lee,1 Michael A. Simpson,1 Yi He,2 Teisha Y. Bradshaw,1 Bettina Blaumeiser,5 William S. Winship,6 Willie Reardon,7 Eamonn R. Maher,8,9 David R. FitzPatrick,4 Wim Wuyts,5 Martin Zenker,10,11 Nathalie Lamarche-Vane2 and Richard C. Trembath1,3,* Author affiliations: 1King’s College London, Department of Medical and Molecular Genetics, School of Medicine, Guy’s Hospital, London, SE1 9RT, United Kingdom; 2McGill University, Department of Anatomy and Cell Biology, 3640 University Street, Montreal, Quebec, Canada; 3Department of Clinical Genetics, Guy’s Hospital, London, SE1 9RT, United Kingdom; 4MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom; 5Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; 6Nelson R Mandela School of Medicine, Faculty of Health Sciences, Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban 4041, South Africa; 7National Centre for Medical Genetics, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland; 8Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Institute of Biomedical Research, Birmingham, B15 2TT, United Kingdom; 9West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, B15 2TG, United Kingdom; 10Institute of Human Genetics, University Hospital Erlangen, University of Erlangen- Nuremberg, Schwabachanlage 10, 91054, Erlangen, Germany; 11Institute of Human Genetics, University Hospital Magdeburg, Leipziger Str. -
Duke University Dissertation Template
Gene-Environment Interactions in Cardiovascular Disease by Cavin Keith Ward-Caviness Graduate Program in Computational Biology and Bioinformatics Duke University Date:_______________________ Approved: ___________________________ Elizabeth R. Hauser, Supervisor ___________________________ William E. Kraus ___________________________ Sayan Mukherjee ___________________________ H. Frederik Nijhout Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Computational Biology and Bioinformatics in the Graduate School of Duke University 2014 i v ABSTRACT Gene-Environment Interactions in Cardiovascular Disease by Cavin Keith Ward-Caviness Graduate Program in Computational Biology and Bioinformatics Duke University Date:_______________________ Approved: ___________________________ Elizabeth R. Hauser, Supervisor ___________________________ William E. Kraus ___________________________ Sayan Mukherjee ___________________________ H. Frederik Nijhout An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Computational Biology and Bioinformatics in the Graduate School of Duke University 2014 Copyright by Cavin Keith Ward-Caviness 2014 Abstract In this manuscript I seek to demonstrate the importance of gene-environment interactions in cardiovascular disease. This manuscript contains five studies each of which contributes to our understanding of the joint impact of genetic variation -
Noncoding Rnas As Novel Pancreatic Cancer Targets
NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.